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Implementation of big innovative projects is often subject to big financing
problems. On the one hand, the possibly profitable project can require an
outstanding investments at the beginning, which can be not feasible for the
firm to acquire on its own, so the investor is needed. On the other hand, such
innovative projects have usually the high level of uncertainty, so the uncertain
revenue can seems not high enough reward for the investments, which need to
be done initially. However, it can be the case that the project, if successful,
would have a great social value (for example, innovative green projects), and
thus the government (or government agency) can be interested in stimulating
the firm to invest into such project. However, intuitively, the firm can acquire
more valid information about the quality and expected payoffs of the project.
Thus, the government needs to stimulate the firm, while reducing the costs
of information asymmetry.

This paper studies the question of an optimal mechanism of supporting a
firm willing to undertake some green innovative project. We concentrate on
the projects, which require the development of technology at the beginning
and then, in case of success can be commercialized. The firms differ in the
"quality" of the technology. For the projects of such type we show that among
the deterministic mechanisms there is no opportunity for the governmental
agency to do better than propose a single mechanism to all the firms, which
means that discrimination is not possible in this conditions. After derivation
of the optimal mechanism, we add the possibility of moral hazard for the
firms, given by the possibility to hide the success of technology. From the
comparison of optimal mechanisms in the case of pure adverse selection and
with addition of moral hazard we determine the value of information on the
success of technology development for the agency.

The problem of the optimal mechanism to support such innovative green
projects has a high practical value since there exists a number of governmen-
tal agencies almost in each country the aim of which is to support financially
the firms, that are able to undertake the innovative project. In France one
example of such agency is Ademe, in collaboration with which the idea of
this research was drawn. It specializes on the financing of the innovations
in energetic transition. Thus. the structure of the project presented in the
main model is based on the real life projects, which increases the practical
value of the current research.

On the theoretical side the model represents principal agent framework,
which includes simultaneously adverse selection and moral hazard. On top
of this the project generates separate benefit for both the agent and the
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principal and the outside option for some types also has some value for the
principal. All those features are not usually presented in the literature in the
same model, so the paper contributes also to the theory of principal-agent
framework.

1 Related literature
There are a multiple branches of literature on principal-agent framework (see
for example Laffont & Martimort (2002)) and mechanism design to which this
research can be classified. The first big part is the literature on financing
innovations. This field is very broad and currently fast expending. It in-
cludes very different kind of research questions and techniques used to tackle
them, but for all of them the main question at stake is the optimal financ-
ing of technological development. The part of such papers concentrates on
experimentation under adverse selection. Even though they study mostly
only technological development and the important part of their mechanism
is the stopping time for experimentation, which is not one of the concerns of
our model (we work in deterministic time), the results of some of these re-
searches are still closely related to ours. A good example is the paper Gomes
et al. (2016). They present the multiperiod model, in which the agent can
choose each period to undertake the risky project of uncertain quality, but
which generates some positive payoff or to proceed with the project generat-
ing known payoffs of value 0. The situation is analysed as a two-arm bandit
problem embedded into principal-agent framework. Under assumptions of
impossibility for the agent to start the project without the financial help
of the principal, the result achieved shows that the first-best action plan is
achievable under the asymmetric information about the quality (expected
payoff of the risky project) by profit-sharing payment rule together with the
repayment of all the opportunity cost of choosing risky project over the safe
one. However, the first-best is no longer achievable if we consider uncertainty
on the opportunity cost of undertaking risky projects instead of the safe one.
The limited-liability issues were not considered, however, but it is stated that
this can affect the result for the case of uncertainty on probability of the risky
project to be good. The result on the possibility to achieve first-best goes
in line with the corresponding result of the simplified version of the current
model with technological stage only, which is presented in Meunier & Pon-
ssard (2017). Also the optimal mechanism is related to our solution since it
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consists of rewarding failure in the presence of adverse selection.
Similar framework as in Gomes et al. (2016), but with addition of com-

mercialization stage is considered by Khalil et al. (2017). This addition
changes the result dramatically, leading to such a non-classic feature of equi-
libria as over-experimentation under some parameter settings. Also it is
stressed out that the presence of adverse selection makes it optimal to re-
ward failure, which goes in line with our result. As an extension Khalil et
al (2017). consider an addition of moral hazard in the form of possibility for
an agent to hide success in experimentation or to reveal it later than it has
occurred. Then it is shown that the presence of such opportunity requires
rewarding success at each stage and affects the reward of failure at the equi-
librium, since the cost of failure reward increases. This result has the similar
origin with the result presented in Section 5 of current paper.

A lot of literature concentrates precisely on ex-post participation con-
straints and limited liabilities, i.e. the constraints on agent’s expected utility
after the type is realized. Sappington (1983) shows that in the presence of
such constraints it is not optimal to induce socially efficient outcome (first
best), but the best strategy is to induce the efficient outcome from the most
productive type. This classic result remains true in our solution. Ollier &
Thomas (2013) consider the model with both adverse selection and moral
hazard, which results in binary output: success or failure, so the agent’s
type is directly related to probability of success and an effort may increase
this probability. The contract proposed should satisfy the agent’s ex-post
participation constraint for each type, since the agent has an infinitely neg-
ative utility in case of negative ex-post payoff. The optimal mechanism is
a composition of fixed payment and positive bonus in case of success and
represents pooling solution. The information rent is also decreasing and set
up to 0 for the highest type, which coincides with our findings. The presence
of success bonus is caused by the presence of moral hazard on top of the
adverse selection.

Bergemann, Castro & Weintraub (2017) concentrate on the two-stage
model of adverse selection with sequential revelation of the type (valuation)
for the agent and only two types. Before contracting the agent learns its
ex-ante type, which is the distribution of possible valuation. The exact val-
uation is learnt after contracting, but the agent will not fulfil contracting
responsibilities if her ex-post utility (given exact valuation) is negative. The
possible screening is related to ex-ante type, and it is shown in the paper
that ex-ante screening (i.e. dynamic contract in terms of Bergemann et al.
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(2017) is optimal if ex-ante types are far enough. The model of Bergemann et
al. (2017) has one additional incentive constraint compared to our model of
technical stage, which rises from the unknown ex-ante type (distribution for
the principal), which gives a possibility to ex-ante screening. However, this
benchmark can be extremely useful for the logical extension of the model,
which would allow the agent to have also some superior information on mar-
ket outcome ex-ante.

Another part of literature concentrates on the questions of type-dependent
reservation utility for the agent, which is also the case in our model. An
important benchmark here is the model of Bruno Jullien (Jullien(2000)).
He considers type-dependent reservation utility with different properties and
shows the conditions needed for the optimal solution to be separating or
instead represent bunching. However, in the model he assumes reservation
utility to be non-monotonic, which is more difficult case than the one con-
sidered in the current paper. Thus, the majority of the difficulties present in
Jullien (2000) are not applicable to our model, since we presume monotonic-
ity and can use monotonic information rents.

There exist also an interesting relation of the model which we use with
the models used to study an optimal licensing contract especially for phar-
maceutical industry. Crama et al. (2014) concentrate on the R&D project,
which consists of technical and commercialization stages with technical stage
divided also in different sub-steps. During the technical phase, each research
step is characterize by a probability of technical success, which is privately
known by the agent. An information about costs and sales estimates is shared
by the two parties. However, the commercialization stage includes also an
effort from the agent, which gives a rise to a moral hazard problem, but of the
other sort than the one we are interested in. However, the model is indeed
close to the one presented here, except the optimal mechanism should include
payments in other direction (from agent to the principal), which changes the
nature of solution.

The rest of the paper will be organized as following: Section 2 will give
the description of the model; Section 3 will present briefly the underlying
one-stage model of adverse selection; section 4 will give the optimal solution
for the main problem without moral hazard, Section 5 will do this in the
presence of moral hazard; section 5 will present a comparison of the cases
and derive the value of information for the principal, section 6 presents some
numerical study of the theoretical result, section 7 concludes.
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2 The model
Assume there exists an agent, which is willing to implement some innovative
project, which is risky and requires some initial investments. More precisely,
at the beginning the agent can invest some fixed amount into the project
(sunk cost) and start the development of the technology. If the technology
is successfully developed the outcome of it can be commercialized (for exam-
ple, it can be a new tool to replace less effective one). The commercialized
project generates a profit for the agent, but also the "social benefit", in which
the principal is interested. Note, that the tool can be commercialized if
technology is successfully developed, however, the firm can take an opposite
decision.

We assume that the agent is able to invest the required amount into
the project and does not need the help of the principal to finance the initial
step. However, the expected profit from the project can be not enough for the
agent to be interested in undertaking it. At the same time the expected social
benefit can be positive and high enough for the principal to be interested in
providing some financial incentives to the agent.

As it was mentioned the project is risky. More precisely we model the
riskiness of the project through the two pieces of information, which can be
unknown for the agent or for the principal. The first one is the quality of the
technology, which is determined by the probability of technical success, i.e.
by the probability that the development of the technology will be successful
and the product will be ready for commercialization. The second source of
riskiness of the project comes from the final revenue (social benefit), which
in general depends on future market conditions. It can be not known by the
agent or the principal and can take the value from the interval.

Usually the firms are more aware about the quality of the project and
have better predictions of the future market than the governmental agen-
cies. We keep this feature and introduce the information asymmetry into
the model. Also, given that there can be sufficient time difference between
the beginning of the project and the end of the technical phase we introduce
some information dynamics through the possibility to learn additional infor-
mation on the future market revenue. This corresponds to the reality since
indeed the information on the future market conditions improves with time.

Given what we have said there are different possibilities of information
structure. However, only part of them are practically interesting. So we
assume that the "quality" of the project is a private information of the agent,
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Principal Agent
Ex-ante (t=0) - p

Interim stage (t=1) Technical output Technical output & R
Ex-post (t=2) Final output Final output

Table 1: Information structure with pure adverse selection

Principal Agent
Ex-ante (t=0) - p

Interim stage (t=1) - Technical output & R
Ex-post (t=2) Final output Final output

Table 2: Information structure with adverse selection and moral hazard

and that she learns exact market outcome immediately after technology is
successfully developed. In this paper we concentrate only on the loss in the
principal’s revenue with the addition of the moral hazard, which is generated
by the asymmetric information on the technical outcome (which is the ex-post
Tech. clock of the tables). So we restrict ourselves to consider the informa-
tion structures, in which market revenue is ex-post observed by both partic-
ipants. To add asymmetric information on this (through non-observability
of the revenue ex-post for the principal) would lead to additional problem
of multidimensional adverse selection with two consecutive adverse selection
problems, which could be an interesting extension by is out of the scope of
this paper. The two information structures under consideration are presented
in the Tables 1 and 2. Now we can go to the formal statement of the two
problems.

2.1 Notations
We will use the following notations for the variables. Those notations with
bar will denote the case of pure adverse selection, the notations with tilde
will denote the joint case of adverse selection and moral hazard.

• F - the amount of the initial sunk investments needed to start the
project;

• p - the probability of successful development of technology (agent’s
type);
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• Ψ(x) - ex-ante distribution of the types;

• R - the final (commercial) outcome of the project;

• G(x) - ex-ante distribution of the possible revenues;

• φ(R) - the function, which relates the agent’s revenue and a principal’s
revenue (social benefit);

• M(x,R) = (H(x), s1(x), γ(x,R), s2(x,R), t(x,R)) - the mechanism pro-
posed by the principal to the agent of type x,
where H(x) ∈ {0, 1} - the allowance to the agent to invest into the
project;
s1(x) - the transfer from principal to the agent in case of failure in
technological development;
γ(x,R) ∈ {0, 1} - the allowance to the agent to commercialize the
product after the successful development of the technology;
s2(x,R) - the transfer from principal to the agent if the product was
commercialized;
t(x,R) - the transfer from principal to the agent if the product was not
commercialized.

As we mentioned before we are looking to the class of deterministic mecha-
nisms, which explains the fact that we restrict H(x) and γ(x) to be either
0 or 1. The variables in the contract, which are related to the development
of technology depend only on the agent’s type, while those related to the
commercialization of the product may depend also on the generated rev-
enue, which is observed ex-post. To better understand the logic of this, we
introduce below the timing of the two considered problems.

In both cases the agent learns the future revenue only, when the future
revenue is realized. Thus, there is no way to condition the initial recom-
mendation to invest and compensation paid in case of technical failure on
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the market outcome. However, the other variables can be conditioned, so we
write as a function of two variables.

The function φ(R), which relates agent’s and principal’s revenues is deter-
ministic. This means, that the principal by observing its own benefit observes
exactly the revenue of the agent (otherwise we would be in the situation of
two dimensional adverse selection, which is outside the scope of this paper).

We should introduce also some assumptions that are crucial for the model:
• The mechanism is proposed by the principal after the type (the "qual-

ity" of the project) is known by the agent. The full commitment is
present.

•
∫ R+
R− RdΨ(R)−F > 0 - this formalises the idea that at least some high
types are willing to undertake the project on its own.

• R + φ(R) is increasing, which means that at least total benefit is in-
creasing with the private profit of the agent.

2.2 Two problems
In this section the two problems (without and with moral hazard) are pre-
sented. The first we will consider pure adverse selection problem. Let’s firstly
add some more notations to simplify the formulation of the problem. Denote
as

R̄T (p, p̂) = H(p̂)
{
p
∫ R+

R−

(
γ(p̂, R)[R+ s2(p̂, R)] + (1− γ(p̂, R))t(p̂, R)

)
dG(R)

−(F − s1(p̂))(1− p) ≥ 0
which is the total expected revenue (given the subsidies), which receives the
agent of type p and report the type to be p̂.

In the formulation of the problem we already use revelation principle, and
so we consider only direct truthful mechanisms.

Denote as R̄T (p) = R̄T (p, p̂), which is the revenue of the agents, which
reveals its type truthfully.

max
M(x,R)

∫ 1

0
H(x)

{
x
∫ R+

R−

(
γ(x,R)[φ(R)−s2(x,R)]−(1−γ(x,R))t(x,R)

)
dG(R)

− s1(x)(1− x)
}
dΨ(x) (1)

8



subject to

R̄T (p) ≥ max{0, p
∫ R+

R−
RdG(R)− F} ∀p ∈ [0, 1] (2)

γ(R)[R + s2(R)] + (1− γ(x,R))t(x,R) ≥ 0 (3)

R̄T (p) ≥ R̄T (p, p̂) (4)

s1(x) ≥ 0 (5)
s2(x,R) ≥ 0 (6)
t(x,R) ≥ 0 (7)
H(x) ∈ {0, 1} (8)
γ(x,R) ∈ {0, 1} (9)

Constraint (2) is ex-ante Individual Rationality constraint. Indeed, the agent
will not be willing to start the project if the expected revenue is negative and
will not take the proposed contract if it’s worse for the agent than Business as
Usual situation. Constraint (3) is interim individual rationality constraint,
which means that the agent will not commercialize the project, if she expects
negative payoff.

Constraint (4) is an incentive compatibility constraint, which says that
the agent should prefer the contract related to his true type than to any
other type (remember, we are looking for direct and revealing mechanism).

Constraints 5-7 are non-negativity constraints on transfers, which we ex-
plained earlier. Constraints 8 and 9 restrict the set of possible mechanisms
to only deterministic ones, i.e. those in which the contract proposed by the
principal includes actions only of type {invest, not invest} and {continue,
stop}, but does not include mixed actions of type "invest with probability
x".

If we introduce moral hazard the objective function as well as the major-
ity of constraints remain the same. The only difference in the formulation
appears in the interim individual rationality constraint. Indeed, given that
the success of technology is not any more observed by the principal, the
agent,observing negative revenue in the future may have incentives to report
failure to the principal and receive compensation s1(x). That means that
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the principal need to give more to the agent during the market stage of the
project to stimulate the truthful revelation of the outcome of technological
development. The new constraint is the following:

γ(R)[R + s2(R)] + (1− γ(x,R))t(x,R) ≥ s1(x) ∀R ∈ [R−, R+] (3bis)

Thus, the pure adverse selection problem is characterized by equation (1)
subject to constraints (2)-(9). The problem with additional moral hazard
resulting from non-observability is summarized by equation (1) subject to
constraints (2),(3bis), (4)-(9).

Before going to the solution of those two problems, we would like to
introduce the solution to the simpler one-stage problem, in which only the
technology is developed and the outcome is realized fully after and is known
from the beginning. We will see later that the solution of this one-stage
problem will be the part of the more complicated two-stage problem, which
is considered in this paper. So the next section will discuss this question.

3 One-stage model
The solution to the one-stage model is presented in Meunier & Ponssard
(2019), where the model with technical phase only is analysed. The payoffs
are assumed to be deterministic, publicly known from the beginning. Let’s
denote them R and V in this section for simplicity. They show firstly that
any strategy will consists of the H(x), which determines the threshold, i.e.
it is equal to 1 for all the projects with success probability higher than some
identified value. Then, the authors divide the problem in two stages: firstly,
for any given threshold the cost-minimizing subsidy scheme is defined, and
then, given that the optimal threshold (which becomes the only variable
left) is determined through the maximization of the net principal’s payoff.
The paper provides two important results concerning the optimal subsidizing
mechanism, which are relevant to the models considered in the current paper.
The first one states the optimal pair of subsidies:

Proposition 1 Whatever the targeted threshold type p, the sceme that min-
imizes the expected cost of subsidies is to set s2 = 0 and s1 = (F − pR)/(1−
p) > 0.

Note that this result holds only under the positivity constraints on subsidies,
which we assumed at the beginning. Without those constraints the paper
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shows that it is possible to reach first-best with another pair of subsidies.
The second important result describes the optimal outcome of the second
step, i.e. the determination of optimal probability threshold;

Proposition 2 The first best is not achieved and the optimal threshold is as
following:

• If

b ≤ R3

F (R− F )

∫ 1

F/R
(1− x)dG(x)

then pSB = pFB and s1 = 0

• Otherwise s2 > 0 as stated in the previous result, pFB ≤ pSB ≤ pBAU

and is determined from the following equation:

pSB = pFB + 1
g(pSB)

R− F
b+R

∫ 1

pSB

1− θ
(1− θSB)2dF

4 Solution of two-stage problem without moral-
hazard

From the previous section we know the solution of the problem with only
technical stage. In this section we will show that two-stage problem can be
solved backwards, and the solution for the technical stage will be as if there
is no market phase and payoffs are replaced by its ex-ante expectations given
the optimal solution for the market stage. But, firstly, we discuss briefly the
first-best solution, i.e. the best principal could achieve, if the information
would be symmetric.

4.1 First-best solution
First-best solution is determined by the two functionsHFB(x) and γFB(x,R),
which means that it shows, which projects are undertaken and which of them
are commercialized in case of technological success.

The problem ex-ante can be formulated as following:

max
HF B(x),γF B(x,R)

∫ 1

0
HFB(x)

{
xγFB(x,R)

∫ R+

R−
(R+φ(R))dR− (1−x)F

}
(10)
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Claim 1 The first-best solution of the two-stage problem is:

HFB(p) =

1, if x
∫ R+

R− (R + φ(R))dR− (1− x)F
0, otherwise.

(11)

γFB(p,R) =

1, if R + φ(R) ≥ 0
0, otherwise.

(12)

The solution presented in the claim 1 is very simple to interpret. It says
that the principal should undertake all the project, which give non-negative
expected total payoff and then at the interim stage to continue those of them,
which generate non-negative real total payoff (not expected at this stage).

4.2 Second-best solution
Now, having in mind the one-stage model and the first-best solution pre-
sented above, we can turn to the second-best solution of our initial problem.
Our tactic is to solve the problem backwards: start with interim stage and
determine the optimal mechanism for the market phase, and then apply the
one-stage model to complete the mechanism with the technical phase trans-
fers. After that we will proof that this mechanism is also ex-ante optimal,
so it is time-consistent, and thus, it is the best mechanism from the class of
deterministic mechanisms. First of all, notice that the principal’s objective
can be rewritten in the following way:

∫ 1

0
H(x)

{
x
∫ R+

R−
γ(x,R)[R + φ(R)]dR− F − R̄T (x)

}
dx (13)

Thus, the principal would like to make the profit of each type agent as small
as possible given that constraints are satisfied. From this formulation, by
comparing maximization problems (10) and (13) it is easy to see that first-
best is not achievable. Indeed, if

∫ R+

R− RdR ≥ F , which is true by assumption,
then some high types will receive at least their business-as-usual profits, by
constraint (2), which is non-negative. So, the benefit of the principal will be
lower.

Now we concentrate on the interim stage and assume that principal max-
imizes there its net benefit from the market stage of the project. That means
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that at the interim stage the principal solves the following problem.

max
γ(x,R),s2(x,R),t(x,R)

∫ R+

R−

(
γ(x,R)[φ(R)− s2(x,R)]− (1− γ(x,R))t(x,R)

)
dR

(14)
subject to constraints (3), (5), (6) and (9). The solution to this problem
is quite simple. Evidently there is no sense in setting t(x) > 0, so in the
optimum t(x) = 0. Then, we choose the minimum s2(x) possible for the
agents, for which γ(x,R) = 1. Notice also that at the interim stage there is
no sense to condition parameters of the mechanism on the type of the agent,
which is not relevant already. The minimum s2(x), which should satisfy
constraint (3,) is −min{R, 0}. And the projects, which should be continued
are those, for which R + φ(R) ≥ 0, which is the same threshold as in the
first-best solution.

To recover the full solution we now need to apply the one-stage model
to the average market phase payoffs given (γ(x,R), s2(x), t(x)) described
above. The corresponding values are:

R̄ =
∫ R+

0
Rg(R)dR (15)

V̄ =
∫ 0

RF B

R + φ(R)g(R)dR +
∫ R+

0
φ(R)g(R)dR (16)

where RFB is the threshold value for R such that R+φ(R) = 0, which is the
fixed point of function −phi(x). Now we can formulate the optimal subsidy
for two-stage model in the case of pure adverse selection.

Proposition 3 Under pure adverse selection the optimal mechanism for the
principal is which maximizes its net benefit, for any targeted value of pSB is:

γ̄(x,R) =

1, if R ≥ RFB

0, oterwise
(17)

s̄2(x,R) =

max{0,−R}, if R ≥ RFB

0, oterwise
(18)

s̄1(x) = s̄1 for all x ∈ [0, 1] and is equal to:

s̄1 = (F − p̄SBR̄)/(1− p̄SB) (19)
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H̄(x) =

1, if x ≥ p̄SB

0, otherwise
(20)

and p̄SB defined by equation (4) putting R̄ and V̄ instead of R and V respec-
tively.

Proof. We have shown already that this mechanism can be obtained by
backward induction. However, we need to check that this mechanism is
time-consistent.

Let’s consider the possible form of the expected total revenue of the agent
(RT (x)), i.e. the feasible set based on incentive constraints. Denote by R(x)
the expected market profit of the agent. Consider two agents of types x and
y such that H(x) = H(y) = 1. Then the incentive constraint (3) can be
rewritten in the following way:

xR(x) + (1− x)s1(x) ≥ xR(y) + (1− x)s(y)

or equivalently as

RT (x) ≥ RT (y) + (x− y)R(y) + (y − x)s(y) (21)

Evidently the same is true for y. Then summarizing constraints for x and y
we get:

R(x)− s(x) ≥ R(y)− s(y) ∀x > y (22)
Thus R(x)− s(x) should be increasing. This result is very intuitive. Indeed,
the higher types value more the revenue from commercialization, since they
have higher probability of successful technology. On the contrary, lower types
prefer to have higher reward in case of technological failure since for them
this event is more likely.

From the equation (21) we can get

RT (x)−RT (y)
x− y

≥ R(y)− s(y)

And from the symmetric equation for y we get:

RT (x)−RT (y)
x− y

≤ R(x)− s(x)

We can be sure that the profit function does not have any jumps in it. Indeed,
if there is a jump, than we can just decrease all the profits on the right by
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the amount of the jump and constraints will still be satisfied. Then the only
non-continuities possible in the profit function are the kinks. Thus, we can
say that, by pushing y → x in every point of differentiability it should be
true that:

RT ′(x) = R(x)− s(x)

This means that the profit function of the firm is not concave (this follows
from the equation (22)). TO see the intuition of why this is true, let’s look
on the graphical representation of the total expected profit function.

Figure 1 demonstrates 2 possible forms of the agent’s total expected profit
function: the left part demonstrates the concave case and the right side
the convex case. Each point on the profit line can be represented in many
possible ways by an item (s1(x), R(x)), which are represented graphically by
the straight line intersecting the profit curve at the point p = x (for any x).
Naturally there are a lot of ways to chose that line (which means to chose the
subsidies to reach this particular point on the profit curve), however not all of
them are incentive compatible. Such, the line demonstrated on the left-hand
side of the Figure 1 is not achieved by incentive compatible subsidies, since
type y then also prefers the item of x (gives strictly higher profit for him
than RT (y) given by the profit curve). Then, it is clear that for the profit
curve to be able to be completed by an incentive compatible menu, it should
be possible to build a straight line at each point of the curve, shich is below
the curve. Clearly it is possible only in two cases. Firstly, it is possible,
when the profit curve is convex as on the right-and side of the graph. Then,
incentive compatible menu is represented by the tangents to the profit curve.
The seconf possibility is pooling solution, when R(x) and s1(x) are constant
for all types x. Then the profit curve is a straight line, and such mechanism
is also incentive compatible.

The discussion above lead us to the set of incentive compatible mecha-
nisms. However, we should restrict it also using individual rationality con-
straints, more precisely the s1 ≥ 0 and RT (x) ≥ xR̄ − F . Now we are going
to show that pooling mechanism is the one (among incentive compatible and
satisfying IR’s) that generates the highest net benefit for the principal. To do
that we will start with the case, when there is minimum R̄ fixed. In our two-
stage settings it is not true, since we can reach any value of R by changing
γ(x,R) even keeping the transfers s2(x) and t(x) positive. Indeed, we can set
the threshold to be greater than 0, which will reduce the market stage profit
of the agent (but also it reduces the market stage benefit of the principal).
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Figure 1: Concave and convex total expected profit of the agent

However, if there is some fixed minimum for R̄ than we can not set it lower
because of positivity constraint for transfers. This case is equivalent to the
case of one-stage model, however, we think it is crucial to consider it there
to make a logical step to the more complicated case.

Assume any chosen threshold of probabilities given by H(x) and denote
it by p̄. To find the optimal subsidy, we need to find the optimal agent’s total
expected curve among incentive compatible, such that the menu induced by
this curve, maximizes the principal’s revenue for given p̄.

Figure 2 shows different expected overall profit curves we could possibly
consider. The red curve represents the best for the principal pulling scheme,
which rewards only failure. The blue curve represents the schemes, which
generate the strictly lower profit for at least some types of the agents than
in the case of best pulling algorithm (on the picture it is for all of them, but
it could intersect the straight line also). However, than those types would
necessarily receive negative subsidy in case of success, tangent will be lower
than R̄ − F , thus those mechanisms does not satisfy positivity constraints
on transfers.

The green curve on the Figure 2 represents the profit curves obtained from
the mechanisms that satisfy all the constraints, and so they lie higher than
the profit curve of pooling mechanism. Since the overall payoff with fixed R̄
is fixed for each x, giving more profit to the firms generate less benefit for
the principal, and thus pooling mechanism is strictly preferred by principal
to any other menu for any given p̄. Thus, the problem reduces to the choice
of p̄ and then pooling mechanism producing this p̄ is the optimal solution.

Note that we concentrated on the differentiable convex curves in the il-
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Figure 2: Optimal menu, fixed R̄

lustrations. However, clearly the same logic applies to the piecewise straight
lines with kinks.

Evidently the solution presented above with R̄ given by equation (15) is
also the only possibility, if there is a commitment problem from the principal
or the agent, i.e. they can commit at the beginning to stick to the chosen
plan after the technical stage outcome is realized. Indeed, we can decrease
expected market stage profit of the agent below R̄ only using γ(x,R) by
making some firms with positive R to stop the project. Such schemes are
possible only under strong commitment, since for both, principal and agent,
when they face technical success, they prefer to switch to γ given by equation
(17).

Now we are ready to discuss the more general case of two-stage adverse
selection model with full commitment. Now the mechanisms corresponding
to the green line on the Figure 2 can not be excluded as non-satisfying con-
straints. However, according to the discussion above R can be set below
R̄ given by equation (15) only by increasing the threshold (represented by
γ(x,R)). Evidently, such increase in γx,R reduces also the market stage
benefit of the principal. Also, note that if by changing threshold of R we re-
duce the agent’s market profit steadily, there is a drop in the market benefit
of principal, which is equal to the principal’s benefit of the projects between
RFB and 0. It could be compensated by lower average failure transfer s1(x).

Figure 3 shows the possible mechanism, which may (or may not) outper-
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form the best pooling solution, which is represented by the blue line. The
dotted line on the right represents the line R̄x−F , which is business as usual
profit, which means that blue light should have the slope not exceeding R̄
(otherwise constraint (2) is not satisfied). On the figure we put the same
threshold p̄ for the "blue" mechanism as for the pooling mechanism, and we
put the profit of the firm of type 1 to be R̄ − F , however, we should check
all the set of convex mechanisms to be sure that there is none of them can
outperform the pooling one. Note that we can not use the same tactics as
before by trying to show that for any chosen threshold p polling mechanism
is the best. In general it can be not true depending on the distribution of p.
However, we should employ there the fact that the "red" mechanism is the
principal’s benefit maximizer among all pooling mechanisms.

Figure 3: Minimal profit not fixed

Let’s start by considering the class of mechanisms generating the profit
curve consisting of two straight parts with a kink as presented on the Figure
4. We would like to show that the pooling mechanism is always preferred to
such two-part mechanism.

Assume the random mechanism, (y, R̄ − F ), which gives a threshold
probability y and R(1) = R̄ (for simplicity we will call this mechanism y-
mechanism). So the principal’s market benefit is V̄ . Denote corresponding
failure subsidy as sy. We would like to know, with which another mechanism
it is better to combine the y-mechanism to maximize principal’s overall net
benefit. Denote the resulting threshold as a and the subsidy of additional
part as sa. The two examples are given on the Figure 4. We see that for
additional left part the market revenue can be lower than R̄. Denote it as
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Ra and corresponding market benefit as Va. Then, in order to find the best
additional part we should solve

max
a,b

∫ 1

y
[V̄ x− (1− x)sy]dG(x) +

∫ y

a
[Vax− (1− x)sa]dG(x)

+
∫ b

y
[(Va − V̄ )x− (1− x)sa + (1− x)sy]dG(x)

Fix a and denote the best b for each a. With the increase in b the subsidy
sa evidently decreases, as well as decreases the difference between Va and V̂ .
Then, clearly the net benefit is maximized by setting b = 1 for each a. So, we
got that the pooling solution is better than any two-part solution with the
same threshold probability. And since the best pooling solution maximizes
among all of them, it is also better than any two-part mechanism.

Above we automatically chosen as the random mechanism the one which
assigns exactly R̄ − F to type 1. However, the result is without loss of
generality. Clearly, if R(1) < R̄, we can always improve it by replacing this
part by the one, which assigns R̄ to type 1 and has the same probability
threshold, since it generates higher principal’s market benefit and requires
smaller subsidy. If we chose the mechanism with R(1) > R̄ it is also worse
then the mechanism with the same threshold, but R(1) = R̄ since it has
greater share of agent’s profit in the fixed welfare.

Thus, we have shown above that the pooling mechanism is better than any
two-part mechanism. Importantly, we have shown that this is true even for
the random threshold, not necessarily the one generated by the best pooling
mechanism.

Consider now the three-part mechanism as illustrated on the Figure 5.
Consider two left parts. Assume that we maximize this left part as we did
before. Now take instead of R̄ and Ra(1) the value of expected profit at point
y, which is R(y). Then, by similar calculations as earlier we get that left part
is maximized, if there is no kink. So three-part mechanism converges to two-
part mechanism and we now that they all are inferior to the best pooling
mechanism.

We can increase the number of kinks and, by applying the same logic,
we will get that the pooling mechanism is always better. But any convex
continuous profit curve can be approximated by the partwiese straight curve
with kinks. Thus, the best pooling mechanism is always preferred by the
principal, which finalizes the proof.
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Figure 4: Two-part mechanisms

Figure 5: Two-part mechanisms
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4.3 Small private payoff
One of the main assumption is that at least some high types are willing to
undertake the project even the help of the principal, which was summarized
by condition

∫ R+

R− RdG(R) − F ≥ 0. However, we can be interested also
in the case, when costs are high enough to make the project too expensive
for the agent alone. So assume in this section that

∫ R+

R− RdG(R) − F < 0
and

∫ R+

R− R + φ(R)dG(R) − F < 0. The structure of first-bes solution is not
changed then and, we can show that in that case, the first-best solution is
achievable by the principal.

Proposition 4 If the project is too expensive for the agent of any type to
proceed on its own, then the first-best solution is achievable for the principal
with the following mechanism:

γ(x,R) =

1, if R ≥ RFB

0, oterwise
(23)

s2 =

F − R̄ + max{0,−R}, if R ≥ RFB

F − R̄, oterwise
(24)

t(x) = F − R̄ (25)
s1 = F (26)

H(x) =

1, if x ≥ pFB

0, otherwise
(27)

and pSB = pFB

It is easy to check that such mechanism leads exactly to the first-best solution
and, thus, is the optimal one for this problem.

5 Adverse selection and moral hazard com-
bined

Now we will study the second problem, in which moral hazard appears in the
form of possibility to hide the technical success. We can tackle the problem
backward in the same way as in the previous section. However, we should
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emphasize the crucial difference, which arises from the moral hazard. Now
the part of mechanism related to the technological development affects di-
rectly the incentives of the agent during the market stage through constraint
(3), where s1(x) appears now at the right-hand side.

Then, considering the interim stage, the minimum subsidy, which is
needed to be paid to the agent for continue is now max{s1(x)−R, 0}, which
increase the subsidy needed for each R. However, s2(x) is not enough, since
the constraint should be satisfied also for the projects, which are not con-
tinued. So we need to set also t(x) > 0 and the minimum possible value
is t(x) = s1(x). Then solving problem (16) we can see that equation for
γ(x,R), which determines the threshold should not change. Then, the ex-
pected market profit of the agent and principal’s benefit are now:

R̃(x) = R̄ + δ(s1(x)) (28)

Ṽ (x) = V̄ − δ(s1(x)) (29)
where

δ(s1(x)) =
∫ 0

R−
s1(x)dΨ(R) +

∫ s1(x)

0
s1(x)−RdΨ(R) (30)

is the additional gains (losses) caused for the agent (principal) by the presence
of moral hazard. However, the usage of one-stage model is not possible for
the same reason of dependence of agent’s incentives and payoffs of the market
stage on the technical failure compensation. However, we can use the market
phase part of mechanism to reduce the number of variables in maximization
problem.

Proposition 5 Under joint adverse selection and moral hazard the optimal
mechanism for the principal is which maximizes its net benefit is:

˜gamma(x,R) =

1, if R ≥ RFB

0, otherwise
(31)

s̃2(x,R) =

max{0, s̃1 −R}, if R ≥ RFB

0, otherwise
(32)

t̃(x) = s̃1 (33)

H̃(x) =

0, if x ≥ ˜pSB
1, otherwise

(34)
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and s1(x) = s̃1 is equal for all x and is determined as following:

s̃1 = argmax
s1

∫ 1

˜pSB

[
x(V̄ + δ(s1))− (1− x)s1

]
dG(x) (35)

where
˜pSB = F − s̃1

R̃− s̃1
(36)

Proof. As in the case of pure adverse selection, the mechanism obtained
by backward induction is the best if there is no commitment in the model.
However, otherwise we should check that this solution is ex-ante optimal.

We can apply the same logic as in the proof of Proposition 4 to show that
the optimal pooling mechanism should be preferred to the convex mechanism.
Indeed, we can reach the analogical equation as (23) and have the similar
result. However, there is still question, if the pooling mechanism, which
gives the minimal possible transfer during the market stage, is the optimal
one. Figure 6 demonstrates the profit lines generated by different possible
pooling mechanisms, which lead to the same threshold ˜pSB. The red line
corresponds to the pooling mechanism described by the Proposition 5. The
green line is a mechanism, giving higher failure subsidy, which is compensated
by reduction in market transfers (through the change in γ(x,R)). The blue
line shows a mechanism, which proposes smaller failure compensation, but
also an additional transfer during market stage on top of the minimal transfer
required. First of all, it is clear that the transfer represented by green line
are not optimal, since they results in both, higher failure subsidy and, a
reduction in the market benefit. So, the only possibility to improve the
proposed pooling mechanism is by considering mechanisms with lower failure
subsidy (as one represented by the blue line). To show this let’s write the
gains, which we get from "blue" mechanism compare to the "red" mechanism.
Denote by δb and δr the change in principal’s benefit caused by "blue" and
"red" mechanisms correspondingly as defined by equation (29). Denote by s1b
and s1r corresponding failure transfers. Then the gain from "blue" mechanism
is: ∫ 1

p̃
[x(δr − δr)− (1− x)(s1b − s1a)]dG(x)

From the definition of the p̃ we know that:

δr = F − (1− p̃)s1r − R̄p̃
p̃
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Figure 6: Different mechanisms resulting in the same threshold p̃

and
δb = F − (1− p̃)s1b − R̄p̃

p̃

Putting this into initial equation we get:∫ 1

p̃
(s1b − s1r)((1− p̃)

x

p̃
− (1− x))dG(x)

Clearly, s1b < s1r. Since x ≥ p̃ for all x, it is true that 1 − p̃ ≥ 1 − x and
x
p̃
> 1. Then the equation under integration is negative for all x. Then the

total gain is also negative. That means, that any "blue" mechanism is worse
than "red" mechanism, which finalizes our proof.

5.1 Low private payoff with moral hazard
This section is analogous to the section 4.3. We would like to relax the 2nd
assumption and would like to assume that the project can be not beneficial
even for the highest type. The condition for this to become important should
be corrected using γ(x,R), s2(x) and t(x) specified before. So in this section
we call the low payoff case, the case, in which R̃ − F < 0. In that case the
mechanism presented in Proposition 5 is not enough to stimulate the agent
to undertake the project. However, compare to the pure adverse selection
case, or one-stage model, in that case it is not possible to reach first-best
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solution. Indeed, the strategy of the previous sections included setting s1 as
close is possible to F , while keeping the fixed part of s2 close to −R̄. Now
it is not possible, since R̄ is bounded below by s1(x), so it is not possible to
make the firm to have zero profit.

6 Comparison of the solutions
In this section we will discuss, how the outcome is changed after introducing
moral hazard. The first step is to analyse how the welfare, agent’s total rev-
enue and principal’s total revenue change when going from one information
structure to another.

The simplest question to answer here is the change in the principal’s
total revenue V T . The adverse selection problem solves equation (1) (or
(13)) subject to constraints (2)-(9), while the problem with moral hazard is
summarized by equation (1) ((13)) subject to constraints (2),(3bis), (4)-(9).
So, the problems are the same except the difference between the constraints
(3) and (3bis). Clearly, constraint (3bis) is strengthening the constraint (3)
in all the cases except if optimal s1(x) in the pure adverse selection problem
is 0. In all other cases evidently it is not possible to duplicate the solution
of pure adverse selection problem in case of moral hazard. Thus, the value
of the optimization function is always lower in the latter case.

Now, to make an exact statement we need to find, if s1(x) = 0 can be an
optimal solution for the initial problem in some cases. It is optimal only if
the optimal probability threshold pSB is such that pSBR̄ − F ≥ 0, which is
Business as Usual threshold or higher. Clearly, it is not possible case, that
the principal would like in the optimum to set the threshold higher than
business as usual situation. Thus, the only case we need to check is exactly
the case, in which pSB = pBAU . For this we can go back to the one-stage
and see that, for low enough V̄ , i.e. the principal’s payoff from the project,
it is better not to intervien during the technical phase. However, the part
of mechanism related to the commercialization will stay the same. Thus,
for the low enough principal’s payoff there is no difference between the two
cases.

Proposition 6 Given the optimality of solutions of both problems it is al-
ways true that:
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• Ṽ ≤ V̄ - the value of information on technical outcome is always non
negative and is strictly positive or V̄ high enough;

• Ṽ ≤ V̄ - giving information on the technical outcome to the principal
is welfare improving;

• s̃1 ≤ s̄1

7 Numerical illustration
In this section we would like to provide some illustration of the results above.
We would like to see the percentage losses caused by presence of moral hazard
and to check some hypotesis about how the parameters affect this difference
presented in the section 6.

The main hypothesis is that what matters for the percentage of losses in
principal’s benefit and welfare is not the exact values of the parameters, but
the relation between b̄ and R̄. This relation can be deduced from the inequal-
ity from Proposition 2. However, this relationship is difficult to work with.
However, we can study the dependence of benefits losses on the percentage
of b̄ in total market payoff. To do this, we fix the market payoff (R̄+ b̄) and
increase the percentage of principal’s benefit in total payoff. We proceed in
two ways: firstly, by changing R−, and then by changing R+. Our hypothesis
suggests that the structural relation between two model should depend only
on the shares in total market payoff, but not on the value of R− or R+.

Figure 7 demonstrates the case of changes in R−. On all the graphs
the horizontal axis represents the percentage of V̄ in total market payoff.
Intuitively, the share of principal’s total benefit in total payoff increases with
the increase of corresponding market share in both models (graphs a) and b)).
However, the percentage losses from moral hazard increase with the relative
growth of barV . The both subsidies increase and, exactly as was shown
in previous section, the transfer in case of the presence of moral hazard is
lower. Finally, we see all thre threshold probabilities (including first best).
The dynamics of two cases is the same. The first increase is driven by the
decrease of R̄ given that V̄ is small enough for 0 failure transfer to be optimal.
However, after the transfer becomes positive, the threshold decreases and
converges to first-best as the share of principal’s benefit increases. Figure
8 demonstrates the same results, but for the change in R+. We can see
that the results are very similar, which confirms our hypothesis that the
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Figure 7: Change in R−: a) Total payoff division - adverse selection; b)
Total payoff division - moral hazard; c) total principal’s benefit; d) Moral
hazard payoffs as percentage of adverse selection case; e) Failure transfers; f)
Threshold probability
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expectations of market payoff matters for the difference of solution, but not
the way those expectations are achieved. However,the ratio of agent’s and
principal’s benefit as we discussed before does not perfectly fit to qualify
the solution structure. To show this we compared the solutions of models
with different parameters, but with the share of principal’s benefit in the
total market payoff constant. The results are presented on Figure9. We
see that solution structure changes as the total market payoff (horizontal
axis) increases. As was already mentioned above the perfect criteria for the
solution would be the relation between V̄ and R̄ induced from Proposition
2.

8 Conclusion
We have modelled the two typical information structures, which a govern-
ment can face in providing incentives for innovations. While the one model
represented pure adverse selection problem, which proceeds in two stages,
the other one added the moral hazard possibility between the two stages.

We have developed the optimal financing mechanism for the principal
(governmental agency) to stimulate innovation under those two possible in-
formation structures. We have shown that the mechanism, which maximizes
net social benefit for the principal among all deterministic mechanisms, is
a single set of transfers - the same for all types, so the optimal solution is
pooling.

We have shown also that in the presence of moral hazard the optimal
mechanism always generates the benefit for the principal, which is at most
as high as the benefit in the pure adverse selection case. The difference
between the two benefits corresponds to the value for the principal of the
technical outcome information and,thus, is the price the principal would be
ready to pay for this information.

We have shown numerically that the relation between two models depends
strongly on the relation between principal’s market benefit and agent’s mar-
ket profit. Relatively low principal’s benefit makes the two situations com-
pletely equivalent. However, the large principal’s benefit may lead to large
percentage difference in the quality of solutions (from the principal’s point
of view).

The problem studied is of high practical value, since it represents the
question of the optimal way of financing green innovations, which is usually
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Figure 8: Change in R+: a) Total payoff division - adverse selection; b)
Total payoff division - moral hazard; c) total principal’s benefit; d) Moral
hazard payoffs as percentage of adverse selection case; e) Failure transfers; f)
Threshold probability
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Figure 9: Moral hazard payoff as percentage of pure adverse selection case:
left side - V̄ /(V̄ + R̄ = 0, 9, right side - V̄ /(V̄ + R̄ = 0, 7

different governmental structures. The solution provided represents the valu-
able benchmark, which can be used to optimize the currently-used financing
practices. However, there are still some practical and theoretical issues we
can address by exploring the model. The one of possible directions is to
study the value of ex-post information on market outcome, which can be of
practical interest in the case of costly auditing.
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Appendix A

A.1 Proof of Claim 1
To see that this solution is indeed first-best it’s sufficient to show that any
change in H(x) or γ(x,R) will lead to the decrease in the principal’s revenue.

Note from equation (10) that for any chosen γ(x,R) HFB(x) should be 1
if , and 0 otherwise. Then, the question is to maximize

∫ R+

R− (R+φ(R)dG(R).
First of all, note that, independent of the threshold for revenue given by
γ(x,R), if the threshold is on smaller than 0, the revenue of the agent remains
unchanged. Indeed, if R + φ(R) > 0 and R < 0 than the agent will be
compensated up to 0 (because of participation constraint (3). If R > 0 than
the agent will just receive its payoff. If γ(x,R) = 0 agent receives just 0.
This can be graphically illustrated. Clearly, the joint payoff of the market
phase is maximized with the threshold given by equation (12).

A.2 Proof of Proposition 6
Consider the two reduced optimization functions corresponding to the two
models (given the optimal market transfers and the fact that H(x) defines
threshold). Denote the optimization function of pure adverse selection model
as following:

V (s1) =
∫ 1

p̄SB
[xV̄ − (1− x)s1]dG(x) (37)

Note that p̄SB is itself a function of s1. Then the corresponding optimization
function for the problem with moral hazard is:

Vmh(s1) =
∫ 1

p̃SB

[x(V̄ − δ(s1))− (1− x)s1]dG(x) (38)

Assume that p̃SB < p̄SB: Then the function Vmh(s1) can be rewritten as
follows:

Vmh(s1) =
∫ p̄SB

p̃SB

[x(V̄ − δ(s1)− (1− x)s1]dG(x)−
∫ 1

p̄SB

xδ(s1)dG(x)+∫ 1

p̄SB
[xV̄ − (1− x)s1]dG(x) (39)

Vmh(s1) =
∫ 1

p̃SB

[x(V̄ − (1− x)s1]dG(x)−
∫ 1

p̄SB

xδ(s1)dG(x) (40)
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In this equation the second term is decreasing in s1. Thus, only the first term
can be increasing in s1. Clearly for the same s1 the effect of a change in s1 on
the first term of Vmh is smaller then the effect on V (s1) (equation 37). Indeed
the decrease in p̄SB is larger than in p̃SB. Then, given that in optimal s1 for
adverse selection case, the derivative of V (s1) is 0, the derivative of Vmh(s1)
can never be 0 for the same value of s1. Moreover, it is for sure negative.
So, the optimal failure transfer in case of moral hazard is lower than in pure
adverse selection model.
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