

Making carbon pricing work

David Klenert, Linus Mattauch, Emmanuel Combet, Cameron Hepburn, Nicholas Stern

Carbon pricing: efficiency and equity

Carbon pricing efficient but limited coverage:

- Raising US\$ 26 billion
- Only around 13% of global greenhouse gas emissions covered (World Bank, 2016)

Equity

- Carbon pricing regressive in **developed countries**, due to carbon-intensive subsistence consumption (Grainger and Kolstad, 2010).
- Neutral or progressive in developing countries (Sterner, 2011)

Carbon pricing: acceptability?

For humans, not econs, acceptability goes beyond equity and efficiency!

Research question and methods

- How should the revenue recycling of a carbon pricing reform be designed in order to be successful?
- Analyze insights from:
 - 1. general equilibrium modeling
 - 2. integrated assessment modeling (IAM)
 - optimal taxation theory
 - 4. behavioral economics
- Provide a rough classification of different recycling schemes in terms of efficiency, equity and acceptability
- Contrast theoretical insights with data on existing carbon pricing schemes

Montag, 22. Mai 2017 4

Main findings

Recycling of revenue in carbon pricing schemes should involve one or more of the following characteristics:

- green spending
- 2. covering losses of incumbents
- 3. providing salient dividends to all households
- 4. supporting especially affected households.

Montag, 22. Mai 2017 5

- I. Revenue recycling: Theoretical foundations
- II. Comparing different recycling options
- III. Real-world carbon pricing schemes
- IV. Summary and policy implications

Theory (I)

General equilibrium models

- Distortionary tax required to raise revenue
- Introduce a price on carbon lower distortionary tax with carbon tax revenue
 - > cost reduction of carbon tax reform
- Example: labor taxes, (weak) double dividend (Bovenberg, 1999; Goulder, 1995)

Integrated assessment models

- Computable general equilibrium models calibrated to economic data in great detail (Carbone et al., 2013; Goulder and Hafstead, 2013; Rausch et al., 2011)
- Ranking of different recycling options

Efficiency: capital/corp. tax cuts > labor tax cuts > transfers

Equity: transfers > labor tax cuts > capital/corp. tax cuts

Montag, 22. Mai 2017 7

Theory (II): Optimal taxation

Taxes are set optimally to internalize an externality:

- oversaving in an overlapping generations model (capital taxes)
- suboptimal distribution in a Mirrlees model (labor taxes)

Example: Optimal labor and environmental taxation (Aigner, 2015; Cremer et al., 1998; Jacobs and de Mooij, 2015; Klenert et al., 2016)

- What are optimal labor and environmental tax rules? (How) do they interact?
- Main results: If labor tax system before the reform is
 - Optimal: recycling through labor tax cuts yields no weak double div.
 instead, uniform lump-sum transfers are preferable
 - Suboptimal:

recycling through labor tax cuts moves tax system closer to optimum, enhances equity and efficiency

Theory (III): Behavioral economics

General insights on the acceptability of carbon pricing reform design (going beyond equity and efficiency):

- 1. **Recycling** is important since the effectiveness of Pigouvian taxes is often doubted
- 2. Labeling: Don't call it a tax!
- 3. Earmarking the revenue for a specific purpose enhances acceptability
- 4. Making benefits **salient** enhances acceptance
- 5. Olson (1965): a policy reform can only be successful if the costs are **diffused** and the benefits are **concentrated**. Confirmed by Kallbekken et al. (2011) with experiments.

Literature: Baranzini and Carattini, 2016; Chetty et al., 2009; Kallbekken et al. 2011; Rivers and Schaufele, 2015

- I. Revenue recycling: Theoretical foundations
- II. Comparing different recycling options
- III. Real-world carbon pricing schemes
- IV. Summary and policy implications

Recycling options

Labor tax cuts

- General equilibrium/optimal taxation: If labor tax system before the reform is
 - **suboptimal**, reducing labor tax rates can enhance efficiency and reduce inequality.
 - optimal, recycling through uniform lump-sum transfers is superior.
- Integrated Assessment Models:
 - **Efficiency**: capital/corp. tax cuts > **labor tax cuts** > transfers
 - **Equity**: transfers > **labor tax cuts** > capital/corp. tax cuts
- Acceptability: rather neutral, potential earmarking effect

	efficiency	equity	acceptability
labor tax (distortionary)	+	+	0
labor tax (non-distortionary)	0	0	0

Capital and corporate tax cuts

- General equilibrium modeling & IAMs:
 - **Efficiency-enhancing** since it removes distortions from the economy, (Auerbach and Hassett, 2015; Goulder, 2013)
 - Regressive since capital/firm owners benefit
- Optimal taxation
 - Capital taxes are already set optimally in order to address some externality Reducing them would distort the economy.
- Behavioral economics
 - Earmarking

	efficiency	equity	acceptability
Capital tax (distortionary)	+	-	0
Capital tax (non-distortionary)	0	-	0

Directed transfers

- General equilibrium modeling & IAMs:
 - Not efficient (does not remove distortions)
 - Progressive more than offsets regressive effects of carbon price
- Optimal taxation: ------
- Behavioral economics
 - Earmarking
 - Olson (1965) fulfilled: diffused costs, concentrated benefits
 - Salience: transfers very visible

	efficiency	equity	acceptability
directed transfers	0	+	+

Uniform transfers

- General equilibrium modeling & IAMs:
 - Not efficient (does not remove distortions)
 - Progressive more than offsets regressive effects of carbon price (less than directed transfers)
- Optimal taxation:
 - More efficient than labor tax cuts if pre-existing tax system is optimal
- Behavioral economics
 - Salience: transfers very visible
 - Survey (CH): very popular due to distributional fairness and simplicity (Carattini et al., 2016)

	efficiency	equity	acceptability
uniform transfers (tax system optimal)	+	+	+
uniform transfers (tax system non-optimal)	0	+	+

Non-neutral recycling

Public investment:

- excellent option in the long term in terms of equity and efficiency. Short term effects adverse.
- acceptability: enhanced due to (a) earmarking and (b) if spent on green investment,
 compensates for ignorance of workings of Pigouvian taxation

Debt reduction:

- exacerbates intergenerational inequality but very efficient since it implies lower tax rates in the future. (Rausch and Reilly, 2015).
- acceptability: unclear, potential positive effect due to earmarking.

General budget:

 Terrible option from the point of view of acceptability, because of lack of understanding of Pigouvian taxation (Kallbekken et al., 2011).

	efficiency	equity	acceptability
public investment (short term)	-	-	+
public investment (long term)	+	+	+
debt reduction	+	-	0
general budget	?	?	-

Theory: summary

- If pre-existing income tax system is optimal: uniform lump-sum transfers best
- Otherwise: labor tax reduction, uniform and directed transfers are all ++
- If state of tax system is unclear, uniform lump-sum transfers are a safe bet.

		efficiency	equity	acceptability
	labor tax (distortionary)	+	+	0
tral	labor tax (non-distortionary)	0	0	0
neu†	capital/corporate (distortionary)	+	-	0
Je-r	capital/corporate tax (non-distortionary)	0	-	0
Revenue-neutra	directed transfers	0	+	+
Rev	uniform transfers (tax system optimal)	+	+	+
	uniform transfers (tax system non-optimal)	0	+	+
public investment (short term) public investment (long term) debt reduction general budget	-	-	+	
	public investment (long term)	+	+	+
	debt reduction	+	-	0
Z	general budget	?	?	-

Theory: summary

- If acceptability is excluded, ranking is more ambiguous
- Uniform lump-sum transfers not always a safe bet

		efficiency	equity	acceptability
	labor tax (distortionary)	+	+	0
tral	labor tax (non-distortionary)	0	0	
heuf	capital/corporate (distortionary)	+	-	
Je-r	capital/corporate tax (non-distortionary)	0	-	
Revenue-neutra	directed transfers	0	+	
Rev	uniform transfers (tax system optimal)	+	+	+
	uniform transfers (tax system non-optimal)	0	+	
<u> </u>	public investment (short term)	-	-	
eut	public investment (long term)	+	+	+
П-П	public investment (short term) public investment (long term) debt reduction general budget	+	-	
2	general budget	?	?	

- I. Revenue recycling: Theoretical foundations
- II. Comparing different recycling options
- III. Real-world carbon pricing schemes
- IV. Summary and policy implications

Real-world carbon pricing

- Range of carbon prices in these regions: 15–131 US\$/tCO2e
- All schemes return a share of the revenue to the households (blue) and a share to firms (green)
- Three of the five use the revenue for some form of government financing/investment

Real-world carbon pricing: global scale

Based on: Carl and Fedor (2016), data from 2013.

- Fundamental differences in recycling between tax and emission trading schemes.
- Tax schemes return a much higher percentage to households and firms.
- ETS use the majority of revenues for green spending (excluding grandfathered permits).

- I. Revenue recycling: Theoretical foundations
- II. Comparing different recycling options
- III. Real-world carbon pricing schemes
- IV. Summary and policy implications

Summary: methods and results

- We provide an ordinal classification of revenue recycling options by considering: equity, efficiency and other acceptability criteria.
- Real-world recycling schemes differ widely across regions and depending on the exact design of the pricing (tax vs. ETS)
- The five analyzed recycling schemes have two things in common:
 - (i) especially affected households are reimbursed,
 - (ii) both households and firms receive a share of the revenue.

Summary: Policy implications

- 1. Uniform lump-sum recycling:
 - non-distortionary, salient, simple, progressive (popular in survey study)
 - a safe option if optimality of the income tax system is unclear
- 2. Carbon revenue recycling in the real world depends strongly on the political and economic context:
 - Focus on distribution: directed transfers outperform other mechanisms
 - Focus on efficiency: corporate and capital tax reductions/debt reduction
 - If **initial income tax system is very inefficient**, using the carbon tax revenue to make it more efficient could enhance both equity and efficiency.
 - Using the revenue for green investments, could enhance support from citizens which are unaware of the workings of a Pigouvian tax.

Latest example: Californian "Cap and Dividend"?

- Legislative proposal (SB775), announced May 1, 2017 to replace existing Californian ETS from 2021 on.
- Cap and Trade scheme with price floor (details debated).

Revenue recycling:

- 50-90% as lump-sum dividend
- Remainder used for "green spending":
 - -public infrastructure investments, notably in disadvantaged communities
 - -climate and clean energy research and development

Montag, 22. Mai 2017 25

Thank you for your attention

Montag, 22. Mai 2017 26

Literature

- Aigner, R. (2014). Environmental Taxation and Redistribution Concerns. FinanzArchiv/Public Finance Analysis, 70(2), 249–277.
- Baranzini, S. & Carattini, A. (2016) Effectiveness, earmarking and labeling: testing the acceptability of carbon taxes with survey data. Environ Econ Policy Stud. DOI 10.1007/s10018-016-0144-7
- Bovenberg, A. L. (1999). Green Tax Reforms and the Double Dividend: an Updated Reader's Guide. International Tax and Public Finance, 6(3), 421–443.
- Calderón, C., & Servén, L. (2014). Infrastructure and Growth. New Palgrave Dictionary of Economics, 2007.
- Carattini, S., Baranzini, A., Thalmann, P., Varone, F. & Frank Vöhringer (2016) Green taxes in a post-Paris world: are millions of nays inevitable? Conference Paper. Tinbergen Conference 2016.
- Cremer, H., Gahvari, F., & Ladoux, N. (1998). Externalities and optimal taxation. Journal of Public Economics, 70(3), 343–364.
- Chetty, R., A. Looney, & K. Kroft. "Salience and taxation: Theory and evidence." The American economic review 99.4 (2009): 1145-1177.
- Chiroleu-Assouline, M., & Fodha, M. (2014). From regressive pollution taxes to progressive environmental tax reforms. Europ. Econ. Review 69, 126–142.
- Fullerton, D. & Monti, H. (2013). Can pollution tax rebates protect low-wage earners? Journal of Environmental Economics and Management, 66(3), 539–553. Kallbekken, S. and M. Aasen (2010). The demand for earmarking: Results from a focus group study. Ecological Economics 69 (11), 2183–2190.
- Goulder, L. H., & Hafstead, M. A. C. (2013). Tax Reform and Environmental Policy: Options for Recycling Revenue from a Tax on Carbon Dioxide. Resources for the Future Discussion Paper, 13–31 (October).
- Grainger, C. A., & Kolstad, C. D. (2010). Who pays a price on carbon? Environmental and Resource Economics, 46(3), 359-376.
- Heijdra, B. J., & Bovenberg, a L. (2002). Environmental Abatement and Intergenerational Distribution. Env. and Resource Economics, 23(1), 45–84.
- Jacobs, B., & De Mooij, R. a. (2015). Pigou meets Mirrlees: on the irrelevance of tax distortions for the second-best Pigouvian tax. Journal of Environmental Economics and Management, 71, 90–108.
- Kallbekken, S., S. Kroll, & T. L. Cherry (2011). Do you not like Pigou, or do you not understand him? Tax aversion and revenue recycling in the lab. Journal of Environmental Economics and Management 62 (1), 53–64.
- Klenert, D., Mattauch, L. (2016), How to make a carbon tax reform progressive: The role of subsistence consumption. Economics Letters 138: 100-103.
- Klenert, D., Mattauch, L., Edenhofer, O., Lessmann, K. (2016) Infrastructure and Inequality: Insights from Incorporating Key Economic Facts about Household Heterogeneity.
 Macroeconomic Dynamics, first view. doi:10.1017/S1365100516000432
- Klenert, D., Schwerhoff, G., Edenhofer, O., Mattauch, L. (2016) Environmental Taxation, Inequality and Engel's Law: The Double Dividend of Redistribution. Environmental and Resource Economics.
- Olson, M. (1965). The Logic of Collective Action: Public Goods and the Theory of Groups. Harvard University Press.
- Rausch, S., Metcalf, G. E., & Reilly, J. M. (2011). Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households. Energy Economics, 33(Supplement 1), 20–33. http://doi.org/10.1016/j.eneco.2011.07.023
- Rausch, S., & Reilly, J. (2015). Carbon taxes, deficits, and energy policy interactions. National Tax Journal, 68(1), 157–178
- Rivers, N., & Schaufele, B. (2015). Salience of carbon taxes in the gasoline market. Journal of Environmental Economics and Management, 74, 23-36.
- World Bank. 2016. State and trends of carbon pricing. Washington, D.C.: World Bank Group. http://documents.worldbank.org/curated/en/598811476464765822/State-and-trends-of-carbon-pricing