Carbon pricing and the Paris Agreement

Symposium for the High-level Commission on Carbon Prices Paris 17 May 2017

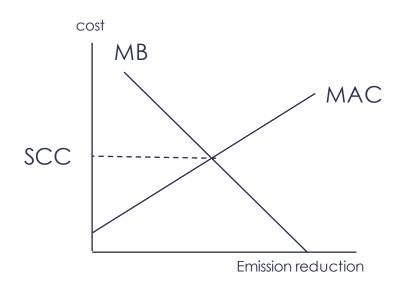
Sam Fankhauser

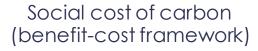
Grantham Research Institute on Climate Change and the Environment London School of Economics

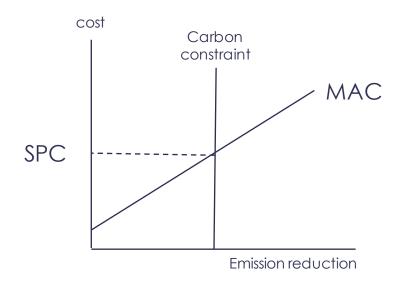
Overview

- Methodological issues
 - Shadow prices vs social costs
- Practical implications
 - What kind of price

Two ways of finding the economic cost of CO₂

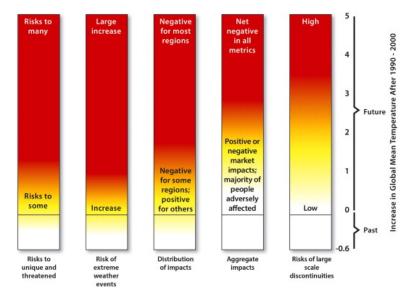

Social costs vs the shadow price of carbon


- Cost-benefit framework: Equate marginal abatement costs with marginal damage (social) costs of emissions
 - Carbon price equals the social costs of carbon
- Cost-effectiveness framework: Calculate the marginal costs of meeting a given (exogenous) carbon constraint
 - Carbon price equals the shadow price of the carbon constraint



Social costs of carbon vs the shadow price of carbon

Shadow price of carbon (cost-effectiveness framework)



Analytical reasons to prefer a shadow price of carbon

- Aggregate costs is not the only concern
 - IPCC identified 5 reasons for concern
- In principle social cost estimates could factor in other reasons for concern
 - In reality economic models do not do this very well
- Credible range in social cost estimates is too wide to guide policy
 - All politically feasible prices fall within the range

IPCC reasons for concern

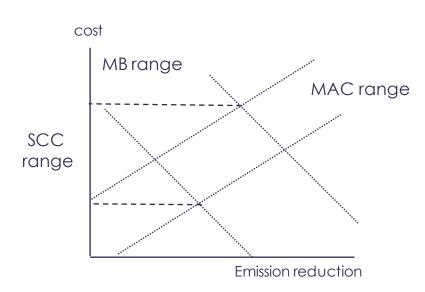
Methodological reasons to prefer a shadow price of CO₂

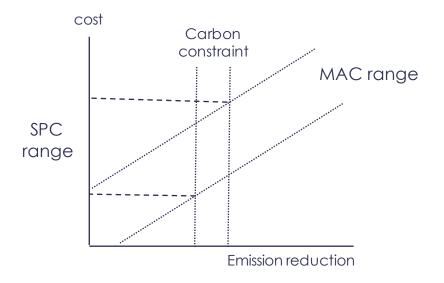
- Deciding what is "dangerous human interference" is not a scientific judgement; it is a policy judgement informed by science (IPCC)
- Paris Agreement expresses the global consensus among policy makers on what is "dangerous"
 - Objectives were reached in full knowledge of the available science, balancing any competing concerns
- This makes "well below 2°C" a more legitimate target than any social cost estimate

Overview

- Methodological issues
 - Shadow prices vs social costs
- Practical implications
 - What kind of price

A different kind of uncertainty


Perhaps but not necessarily a narrower range of estimates

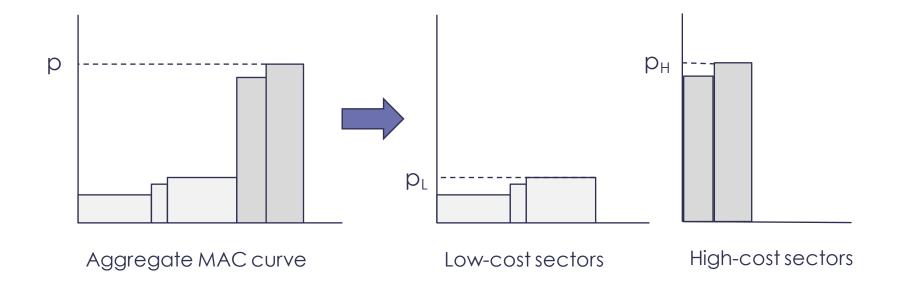

- Social cost estimates are most sensitive to ethics and science parameters
 - discount rate, climate sensitivity, slope of the damage function
 - MAC parameters less relevant since the damage curve is relatively flat locally
- Shadow price estimates are most sensitive to economic and engineering parameters
 - technology costs, learning curves, energy savings potential
 - main damage parameter that matters is climate sensitivity

Social costs of carbon vs the shadow price of carbon

Social cost of carbon (benefit-cost framework)

Shadow price of carbon (cost-effectiveness framework)

Not necessarily a uniform price of carbon


- The shadow price of carbon will differ across countries if countries have different carbon constraints (levels of ambition)
 - NDCs do not guarantee that marginal abatement costs equate across countries
 - International carbon trading may in time lead to more uniform carbon prices
- Carbon prices may differ across sectors if sectors have very different abatement costs
 - Differentiated carbon prices may reduce the risk of excessive rents

Is there a case for differentiated carbon prices?

Differentiated prices create less rent (i.e., fewer distributional issues)

Not only a carbon price

Climate change policy requires additional interventions

Address the climate change externality

Remove associated barriers

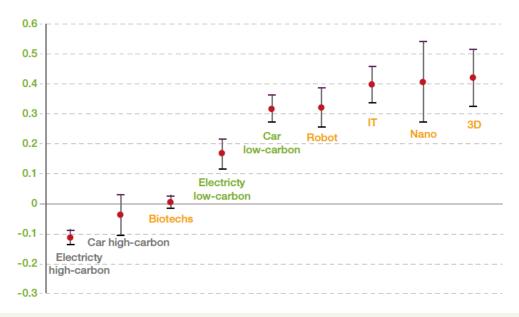
Mitigate unintended consequences

Carbon Pricing

Clean innovation

Energy efficiency

Green finance


Competitiveness

Fuel Poverty

Example: The knowledge spill-overs from clean innovation

Note: The figure compares the intensity of knowledge spillovers (as measured by patent citations) in a number of technologies, compared to the average patented technology. The y-axis represents the percentage difference in the intensity of knowledge spillovers. For example, a value of 0.2 means that the technology induces 20% more knowledge spillovers than the average patented technology. Red dots are point estimates; the black lines show 95% confidence intervals. Source: Dechezleprêtre et al. (2014)

Conclusions

From the social cost of carbon to the shadow price of carbon

- Environmental Economics 101: Calculate the social cost of carbon and price the externality at that level; this is the only policy intervention required
- Environmental Economics 401: Use a shadow price of carbon that reflects the Paris consensus; use additional policy instruments to address associated market failures
- PS: Some policy makers may still respond to monetary estimates of climate change impacts; providing them requires a new generation of models / analysis

