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Motivation ﬂ(".
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The ongoing energy transition leads to

— build-up of photovoltaic (PV) systems
— growing share of electric vehicles (Ef/@

— declining battery costs

\

)

Fluctuation of power generation through RES

An increasing number of EV cause
— increase of energy consumption of a representative household
Challenge — influence of the grid load (i.e. peak power)

~

Local stationary or mobile storages might solve this challenge ~ /
Use of different fleets of EVs as controllable loads )
— integration of PV power through smart charging
Obiecti — evaluation of uncertainties of PV generation and energy
jective demand
/
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Overview model structure of the parking

garage use case

Solar Panel

(100 KW o)

Data for real PV
generation;
day-ahead PV forecast

Parking garage

Transformer

(200 K'W)
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Data of
COIMITI2n \

Main assumptions:

— Simulation horizon (1 day)

— Temporal resolution (15min)

-2 EV <) Charging Points

— Battery capacity: 24 kWh

— Average gross electricity
consumption: 0.2 kWh/km

— Charging power 11 kW

— Marginal costs of PV =0

— Charge only if connected

J

fleet

Data of long-term
EV customers

mmercial

Working

Data of short-term
EV customers

Further characteristics of the three EV fleets:
Each EV fleet is modeled with a three-dimensional kernel density estimation (arrival and
departure time, energy demand)
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Uncertainties of RES generation

Fluctuation of PV generation over one year
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For considering this uncertainty
we constructed three scenarios
for PV generation

1 Perfect Foresight

hypothetical a-priori known PV curves
TRANSNETBW

2 Day-Ahead Foresight

prediction of the day-ahead PV generation
TR/ANSNETBW

3 Historic Foresight

empirical perturbed forecast-curves
reflecting the uncertainty with time series
analysis (time-dependent normal-

distribution) ﬂ pL:]thon
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Model conception for cost minimization with

PV utilization

(Perfect Foresight PV optimization (MILP)\

Objective: Minimizing cost c of external
needed charging power x

(with a-priori known PV curve)

min C = z(ct- X¢)
X

. ¢ J

(" Day-Ahead Foresight PV optimization )
(MILP)

1t stage objective: Planning with forecasted
PV and energy demand

min C = Z(ct- X¢)
X

- ‘ J

. 4

C Deviation cost of realized day h

2"d objective: Deviation of forecasted/ realized
PV and energy demand

- Z (a-c pos(xreal xt) +
X

b-c, - neg(xF°® — x,))

Y

AT
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/ Historic Foresight PV optimization & uncertain \
energy demand (Two-stage stochastic optimization
with Sample Average Approximation (SAA))

stage decision

/Objective: Minimize the cost of the 1%t stage \
decision plus the expected cost of the 2"

min > (e x) + Eu(Q(x, )
t

With SAA mlnz(ct %) + NZ 0(x, /)

15t stage }:&
= GO O

pricing +
scheduling

deviation price
for volatile PV &

energydemand//
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Two-stage stochastic optimization with SAA
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Objective
. _ 1 L scen . scen ]
mxln C = lZt(ct' xt)' + \N Zj(Zt(a Ct pOS(xj,t - xt) +b-c neg(xj,t —x¢)) + Si,j f) }
1 |
First stage Second stage
(costs for electricity
from grid) Constraints First Stage
. . . 1 .
Sum of all chargings fulfills demand of all accepted queries: ZtZ' pit=d; Vi
Defines demand of all accepted queries: di =q;-v; Vi
At least 90% of queries are fulfilled: 2iqi =09 Vi
Sum of overall charging considers global wattage limit: Yibit < GW vVt
External needed charging power from the grid: Xy = XiPit — PVp V' t
Positive needed external charging power from the grid: X¢ =0 vt
No negative chargings: pit =0 Vit
Parameters

Variables EEX-Price c

External charging power from the grid X Deviation penalty demand a

External charging power from the grid, scenario  xscen Deviation penalty supply b

Binary if EV query is served q PV power PV

Total EV demand d Global Wattage GW Indices

Charging power p Local Wattage LW Index for time steps t

EV query demand v Number of scenarios of SAA N Index for number of vehicles i

Binary if EV query is served in SAA scenario [ Penalty for not serving SAA scenario EV query  f Index for number of scenarios of SAA j

14/11/2017
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Two-stage stochastic optimization with SAA '-\g(".

Objective

: 1
min C = Ye(er xe) + ~%;Eea ¢ pos(xfee™ —x.) + b ¢ neg(FE" —x)) +sp5+ f)
| J

Y
Second stage

(penalties for not meeting the load forecast)

Constraints Second Stage

. . 1 .-
Sum of all chargings and error term equal demand of all queries: th ‘piie ey =di" Vi

Demand of all scenario queries: dise™ = q; - vi5" Vi]

Sum of overall scenario charging considers global wattage limit: ¥ p;%" < GW Vit

Required electricity from the grid: Xt = ipiie — PVt Vit

Error term for infeasibility states in second stage: € < Sij Vi Vi, j

No discharge: pijt =0 Vijt

Positive error term: eijj=0 Vij

Variables

External charging power from the grid xseen Parameters

Total EV demand dscen EEX-Price c

Charging power pscen Deviation penalty demand a

PV power py/scen Deviation penalty supply b

Binary if EV query is served q Global Wattage GW Indices

EV query demand v Local Wattage LW Index for time steps t

Binary if EV query is served in SAA scenario S Number of scenarios of SAA N Index for number of vehicles i

Auxiliary variable for SAA scenario e Penalty for not serving SAA scenario EV query  f Index for number of scenarios of SAA j
14/11/2017 Integration of Electric Vehicles into the Energy System
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Load management of EV fleets with uncertain \‘(IT

PV generation & energy demand

eeeeeeeeeeeeeeeeeeeeeeeeeee

Charging load distribution of the three EV fleets after optimization with

respect to PV integration and cost minimization

Historic Foresight

140 —

120

Charging power [kW]
A © ® O
(@) o o o

N
o

SR

Commercial customers ®
Short-term customersﬁ
Long-term customers @

Price

PV-power

N

> All three EV fleets can use PV power for charging
» Long-term customers use the highest share of the PV power for charging
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Cost evaluation of the uncertainty in PV
generation and energy demand

Comparison of the different costs for the applied strategies

Mean of charging costs for the Day-Ahead forecast scenario (1.0)

14/11/2017
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1.2

0.6

0.4

TRZANSNETBW @ python

Perfect Foresight Day-Ahead Foresight Historic Foresight

» Stochastic programming is important when considering charging costs.
» Historic Foresight scenario leads only to marginal cost reductions.
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PV integration by EV charging _\ﬂ(IT

Comparison of the PV utilization of the applied strategies
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0
Available Uncontrolled Perfect Day-Ahead Historic
PV Foresight Foresight Foresight

~80% 100% >90% >90%
» PV on parking garage is synergetic
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conclusions . == el

® Uncertainties of PV generation (time and load) and EV charging (arrival
and departure time, required electricity) have an impact on charging
costs and PV usage for charging.

® Itis wise to use stochastic programming when evaluating the share of
flexible loads (such as PV) for EV charging.

® Especially commuter vehicles are highly suitable to be charged by
electricity from (local) PV generation.

® Parking garage operators can reduce their electricity demand from grid
significantly if PV is installed.

® We see high synergies with the decarbonisation of transport.
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Back up — Model structure

Mobility
Studies

Car park
data EV data

Y

Mobility
Applications

|

Qual./quant.

|

analysis

Sampling
(Normal
Distribution)

|

Multivariate 1D-, 2D-, 3D-KDE

Stochastic
driving profiles

* Qual./quant.
Analysis

* Intersection

* Interpolation
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* Bestfit cross-validation for
bandwith

* inverse-transform-sampling

» Kernel — gaussian

Stochastic Programming
* MILP
* Two-stage SMILP
* SAA
» Scenario reduction (latin
hypercube sampling)
» Simulation

Utilization of PV

Charging costs
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Sampling Joint Dist.
(multivariat random
variables)

+ Validation
 Convergence tests

EEX PV
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Time

Y series
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