

Deutsch-Französisches Institut für Umweltforschung Institut Franco-Allemand de Recherche sur l'Environnement

Integrating electric vehicles and stationary electricity storages into decentralized energy systems with photovoltaic generation

Patrick Jochem, Katrin Seddig, Johannes Schäuble and Wolf Fichtner

Chair of Energy Economics (Prof. Fichtner)

KIT - The Research University in the Helmholtz Association

www.kit.edu

- 1. Introduction
- 2. Methodology and model structure
- 3. Results
- 4. Conclusion and Outlook

Motivation

1. Introduction

2. Methodology and model structure

- 3. Results
- 4. Conclusion and Outlook

	Energy Policy 109 (2017) 428–440		Energy Policy 98 (2016) 520-532	
	Contents lists available at ScienceDirect	-	Contents lists available at ScienceDirect	ENERGY
and the	Energy Policy		Energy Policy	rotier
ELSEVIER	journal homepage: www.elsevier.com/locate/enpol	ELSEVIER	journal homepage: www.elsevier.com/locate/enpol	

On the influence of jurisdiction on the profitability of residential photovoltaic-storage systems: A multi-national case study

Fiodar Kazhamiaka^{a,*}, Patrick Jochem^b, Srinivasan Keshav^a, Catherine Rosenberg^c

^a University of Waterloo, Cheriton School of Computer Science, 200 University Ave. West, Waterloo, Ontario, Canada ^b Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (III), Kaiserstr. 12, D-76133 Karlsruhe, Germany ^c University of Waterloo, Electrical and Computer Engineering, 200 University, Leve. Vest, Waterloo, Ontario, Canada Solar energy storage in German households: profitability, load changes and flexibility

Thomas Kaschub*, Patrick Jochem, Wolf Fichtner

Chair of Energy Economics, Institute for Industrial Production (IIP), Karlsruhe Institute of Technology (KIT), Building 06.33, Hertzstr. 16, D-76187 Karlsruhe, Germany

Overview model structure of the parking garage use case

Further characteristics of the three EV fleets:

 Each EV fleet is modeled with a three-dimensional kernel density estimation (arrival and departure time, energy demand)

Uncertainties of RES generation

Fluctuation of PV generation over one year

Data source: Meteotest (2014)

For considering this uncertainty we constructed three scenarios for PV generation

1 Perfect Foresight

hypothetical a-priori known PV curves TRANSNETBW

2 Day-Ahead Foresight

prediction of the day-ahead PV generation

TRANSNETBW

3 Historic Foresight

empirical perturbed forecast-curves reflecting the uncertainty with time series analysis (time-dependent normaldistribution)

Model conception for cost minimization with PV utilization

Two-stage stochastic optimization with SAA

Objective

$\min_{\mathbf{x}} C = \sum_{t} (c_t \cdot x_t) + \frac{1}{N} \sum_{j} (\sum_{t} (a \cdot t_{j}))$	$c_t \cdot pos(x_{j,t}^{scen} - x_t) + b \cdot c_t \cdot neg(x_{j,t}^{scen} - x_t))$	$+ s_{i,j} \cdot f$)	
	γ]	
First stage	Second stage		
(costs for electricity			
from grid) Constrain	nts First Stage		
Sum of al	I chargings fulfills demand of all accepted queries:	$\sum_{t} \frac{1}{4} \cdot p_{i,t} = d_i$	∀i
Defines d	$d_i = q_i \cdot v_i$	∀i	
At least 9	At least 90% of queries are fulfilled:		
Sum of ov	verall charging considers global wattage limit:	$\sum_i p_{i,t} \leq GW$	∀t
External r	$x_t \ge \sum_i p_{i,t} - P_i$	V _t ∀t	
Positive n	$x_t \ge 0$	∀t	
No negati	ve chargings:	$p_{i,t} \geq 0$	∀i,t
Variables	Parameters EEX-Price c		

Variables		EEX-Price	с	
External charging power from the grid	х	Deviation penalty demand	а	
External charging power from the grid, scenario	X ^{scen}	Deviation penalty supply	b	
Binary if EV query is served	q	PV power	PV	
Total EV demand	d	Global Wattage	GW	Indices
Charging power	р	Local Wattage	LW	Index for time steps
EV query demand	v	Number of scenarios of SAA	N	Index for number of vehicles
Binary if EV query is served in SAA scenario	S	Penalty for not serving SAA scenario EV query	f	Index for number of scenarios of SAA

t i

Two-stage stochastic optimization with SAA

Objective

$\min_{x} C = \sum_{t} (c_t \cdot x_t) + \frac{1}{N} \sum_{j} (\sum_{t} (a \cdot c_t \cdot pos(x_{j,t}^{scen} - x_t) + b \cdot c_t \cdot neg(x_{j,t}^{scen} - x_t)) + s_{i,j} \cdot f)$

Second stage (penalties for not meeting the load forecast)

e_{i,i}

Constraints Second Stage

Sum of all chargings and error term equal demand of all queries:
Demand of all scenario queries:
Sum of overall scenario charging considers global wattage limit:
Required electricity from the grid:
Error term for infeasibility states in second stage:
No discharge:
Positive error term:

s:	$\sum_{t} \frac{1}{4} \cdot p_{i,j,t}^{scen} +$	$- e_{i,j} = d_{i,j}^{scen}$	∀i,j
	15000	scon	

$$d_{i,j}^{scen} = \mathbf{q}_{i} \cdot v_{i,j}^{scen} \qquad \forall i,j$$

$$\sum_{i} p_{i,j,t}^{scen} \leq GW \qquad \forall j,t$$

$$x_{j,t}^{scen} \ge \sum_{i} p_{i,j,t}^{scen} - PV_{j,t}^{scen} \quad \forall j, t$$

$$e_{i,j} \le s_{i,j} \cdot v_{i,j}^{seen} \qquad \forall i, j$$

$$p_{i,j,t}^{scen} \ge 0 \qquad \forall i, j, t$$

$$\geq 0$$
 \forall i, j

Valiables					
External charging power from the grid	x ^{scen}	Parameters			
Total EV demand	d ^{scen}	EEX-Price	С		
Charging power	P ^{scen}	Deviation penalty demand	а		
PV power	PV ^{scen}	Deviation penalty supply	b		
Binary if EV query is served	q	Global Wattage	GW	Indices	
EV query demand	v	Local Wattage	LW	Index for time steps	t
Binary if EV query is served in SAA scenario	S	Number of scenarios of SAA	Ν	Index for number of vehicles	i
Auxiliary variable for SAA scenario	е	Penalty for not serving SAA scenario EV query	f	Index for number of scenarios of SAA	j

Variables

- 1. Introduction
- 2. Methodology and model structure
- 3. Results
- 4. Conclusion and Outlook

Load management of EV fleets with uncertain PV generation & energy demand

Charging load distribution of the three EV fleets after optimization with respect to PV integration and cost minimization

- All three EV heets can use PV power for charging
- Long-term customers use the highest share of the PV power for charging

Cost evaluation of the uncertainty in PV generation and energy demand

Comparison of the different costs for the applied strategies

Stochastic programming is important when considering charging costs.
Historic Foresight scenario leads only to marginal cost reductions.

PV integration by EV charging

Comparison of the PV utilization of the applied strategies

- 1. Introduction
- 2. Methodology and model structure
- 3. Results
- 4. Conclusion and Outlook

Conclusions

- Uncertainties of PV generation (time and load) and EV charging (arrival and departure time, required electricity) have an impact on charging costs and PV usage for charging.
- It is wise to use stochastic programming when evaluating the share of flexible loads (such as PV) for EV charging.
- Especially commuter vehicles are highly suitable to be charged by electricity from (local) PV generation.
- Parking garage operators can reduce their electricity demand from grid significantly if PV is installed.
- We see high synergies with the *decarbonisation* of transport.

Deutsch-Französisches Institut für Umweltforschung Institut Franco-Allemand de Recherche sur l'Environnement

Integrating electric vehicles and stationary electricity storages into decentralized energy systems with photovoltaic generation

Patrick Jochem, Katrin Seddig, Johannes Schäuble and Wolf Fichtner

Chair of Energy Economics (Prof. Fichtner)

KIT - The Research University in the Helmholtz Association

Back up – Model structure

