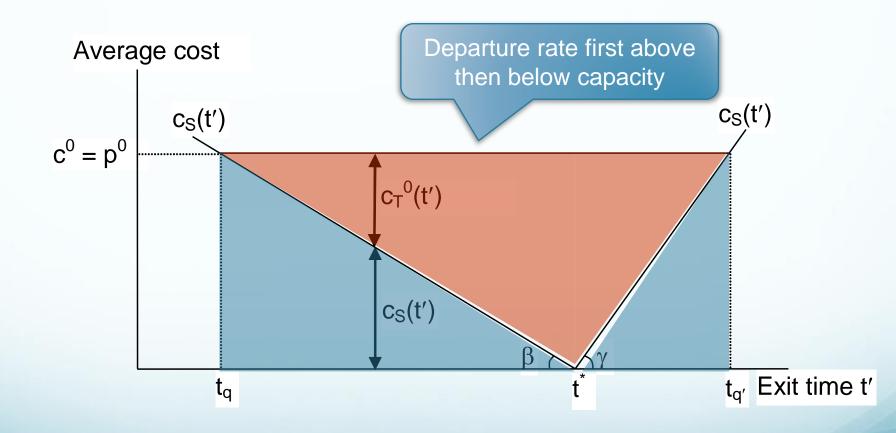
Optimal Congestion Pricing with Diverging Long-Run and Short-Run Scheduling Preferences


Erik T. Verhoef Department of Spatial Economics, VU University Amsterdam

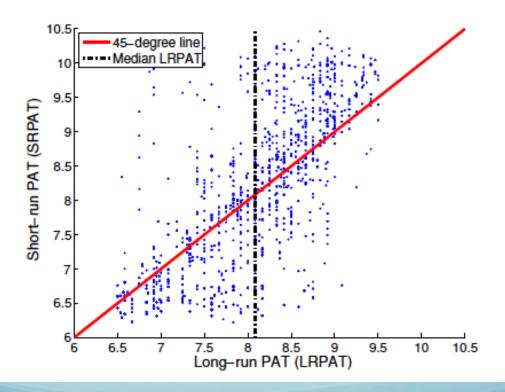
Introduction

- Values of travel delays and schedule delays are central concepts in transport economics
- Recent evidence suggests that travellers decompose scheduling decisions into
 - long-run choices of routines
 - short-run choices of departure times
- This paper: implications for optimal congestion pricing
 - Do we need separate instruments to optimize both decisions?

Deterministic starting point

Vickrey 1968; Small 1982

Two dimensions of SR vs LR


- 1. Different measures for preferred arrival time PAT
 - Long-run LRPAT (t^{*}): preferred arrival time if there were no congestion, ever
 - Interpretation in standard bottleneck model
 - Short-run SRPAT (*t*[#]): preferred arrival time given the expected pattern of travel times
 - Choice of 'routines' may make SRPAT deviate from LRPAT
 - With a LRPAT at 9:00, an SRPAT at 7:00, and a scheduled meeting at 7:30, an arrival time at 8:30 would bring cost of schedule delay late, not early
 - Evident: important to address in empirical modelling

Two dimensions of SR vs LR

- 2. Different values of time and schedule delay, depending on 'degree of permanentness'
 - A structural one-minute travel time gain brings more benefits *per day* than an incidental minute on a random day
 - An unanticipated schedule delay brings a greater disutility than schedule delays that are anticipated when forming routines

Empirical confirmation

- Peer, Verhoef, Koster, Knockaert (2015)
 - Drivers plan their routines to avoid congestion

Empirical confirmation

	Long-Run		Short-Run	
Coefficient	Value	t-Statistic	Value	t-Statistic
β_{R}	0.22	4.87	0.13	5.78
$eta_{ extsf{ extsf extsf{ extsf} extsf{ extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf} extsf{ extsf} e$	-6.56	-7.31	-0.69	-1.45
β_{E}	-2.03	-13.28	-2.89	-18.38
β_L	-1.57	-13.90	-2.70	-20.34
heta	-	-	0.43	6.25
VOT (Euro/h)	30.16		5.20	
VSDE (Euro/h)	9.34		21.62	
VSDL (Euro/h)	7.22		20.22	
Nr. Obs.	1158		5965	
LogLik.	-2681		-10550	
Pseudo R ²	0.17		0.36	

Implications for pricing?

- Implications for pricing
 - Is a separate regulation of choice of t[#] desirable, above that of trip timing?
 - Peer and Verhoef 2012
 - Bottleneck model
 - Not conclusive on need for LR toll due to corner solutions

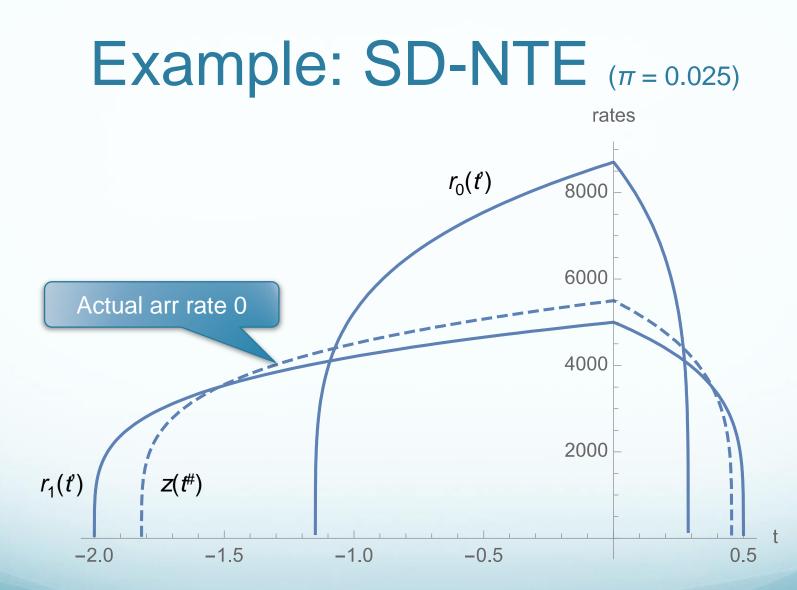
Henderson-Chu model

- Alternative to Vickrey ADL bottleneck
 - Demand-side and scheduling behaviour identical
 - " $\alpha \beta \gamma$ " preferences
 - Congestion technology different
 - Vickrey: kinked performance function
 - Chu: smooth performance function
 - Delay is a function of outflow
 - E.g.: power function ("BPR")
 - Optimal toll: instantaneous application of Pigouvian toll
 - Both have closed-form solutions
 - Also for equilibrium (time-independent) cost (c) and price (p)

Main ingredients

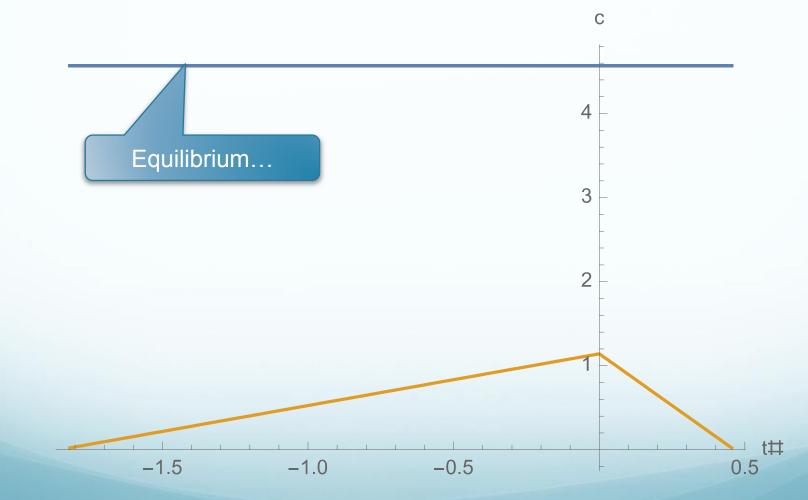
- N identical travellers with " $\alpha \beta \gamma$ " preferences
 - LR VoSD fraction g of SR VoSD
 - LR VoT: relative premium of a added to SR VoT
- SRPAT (t[#]) endogenous, LRPAT (t^{*}) identical and 0
- To avoid degenerate problem, we need variation between the days
 - Stochastic capacity $K: K_0 > K_1$
 - Probabilities: $(1-\pi)$ on state 0; π on state 1
 - On the day itself, all travellers know the realization

Main ingredients con'd


- BPR travel time function
 - Ignore free-flow travel time
 - Delay: (*r*(*t*)/*K*)^X
- Equilibria
 - Short-run: equilibrium distribution of arrival times r(t)
 - ... given the distribution of SRPATs z(t[#]) and given the realization of K
 - Long-run: equilibrium distribution of SRPATs *z*(*t*[#])
 - ... given that short-run equilibria as above will apply

LR equilibrium

- Three candidate types of LR equilibria
 - "Always Dispersed" (AD): values of t[#] are chosen so dispersed that all drivers arrive at t[#] in both states
 - "Sometimes Dispersed" (SD): density of z(t[#]) is so high that only state 0 is dispersed
 - State 1 is "condensed": early drivers arrive before their t[#] and late drivers after their t[#]
 - "Never Dispersed" (ND): both states "condensed"
 - ND is no equilibrium: it always pays off to widen z(t[#]) to save SR SDC and accept increased LR SDC (g<1)


Solution

- Important elements are the "reference arrival rate distributions" $r_0(t)$ and $r_1(t)$
 - These would apply in the basic Chu model with deterministic capacity K_0 or K_1 , and with identical t^*
- Actual arrival pattern:
 - Condensed peak: reference arrival pattern
 - Dispersed peak: *r*(*t*') equals *z*(*t*[#])
 - Everybody arrives on time (at SRPAT)

Congestion pricing with LR & SR scheduling

Expected SR cost and LR cost

15

Are long-run tolls needed? AD

$$c^{LR}(t^{\#}) = \alpha \cdot (1+a) \cdot \left((1-\pi) \cdot \left(\frac{z(t^{\#})}{K_0} \right)^{\chi} + \pi \cdot \left(\frac{z(t^{\#})}{K_1} \right)^{\chi} \right) + \begin{cases} -\beta \cdot g \cdot t^{\#} \\ \gamma \cdot g \cdot t^{\#} \end{cases}$$

$$p^{LR}(t^{\#}) = c^{LR}(t^{\#}) + (1-\pi) \cdot \tau_0^{SR}(t^{\#}) + \pi \cdot \tau_1^{SR}(t^{\#}) + \tau^{LR}(t^{\#})$$

$$mc^{LR}(t^{\#}) = c^{LR}(t^{\#}) + z(t^{\#}) \cdot (1+a) \cdot \alpha \cdot \left((1-\pi) \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})} + \pi \cdot \frac{\partial T_1(z(t^{\#}))}{\partial z(t^{\#})} \right)$$

$$\tau_0^{SR}(t^{\#}) = z(t^{\#}) \cdot \alpha \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})} \qquad \tau_1^{SR}(t^{\#}) = z(t^{\#}) \cdot \alpha \cdot \frac{\partial T_1(z(t^{\#}))}{\partial z(t^{\#})}$$

$$\tau^{LR}(t^{\#}) = z(t^{\#}) \cdot \alpha \cdot \alpha \cdot \left((1-\pi) \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})} + \pi \cdot \frac{\partial T_1(z(t^{\#}))}{\partial z(t^{\#})} \right)$$

Intuition

- To establish short-run optimum in both states, short-run tolls must be based on short-run " $\alpha \beta \gamma$ "
 - Through Pigouvian form, α in particular
- But long-run expected travel times are proportional (probability-weighted) with short-run travel times
 - Same internalization argument applies
 - Must be a long-run toll in order not to distort short-run optima
- Value of long-run toll is simply a times the expected value of short-run tolls

Long-run tolls are less strongly needed in SD

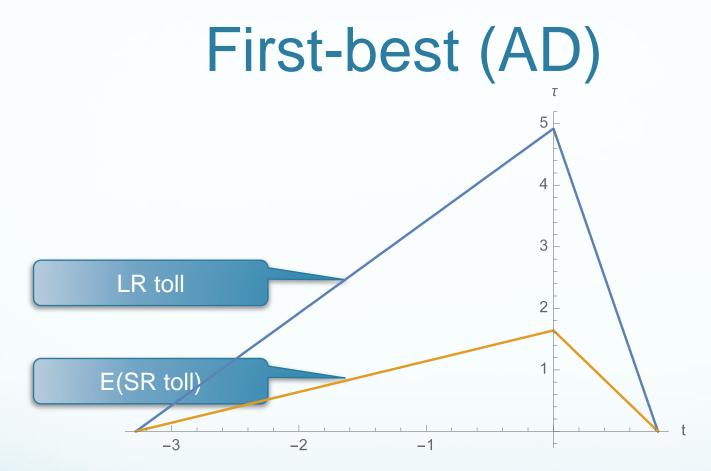
$$c^{LR}(t^{\#}) = (1-\pi) \cdot \alpha \cdot (1+a) \cdot \left(\frac{z(t^{\#})}{K_{0}}\right)^{\chi} + \pi \cdot \left(c_{1}^{SR} + a \cdot \alpha \cdot \left(\frac{r_{1}(t'(t^{\#}))}{K_{0}}\right)^{\chi}\right) + \begin{cases} \beta \cdot (g-\pi) \cdot -t^{\#} \\ \gamma \cdot (g-\pi) \cdot t^{\#} \end{cases}$$

$$p^{LR}(t^{\#}) = \tau^{LR} + (1-\pi) \cdot \left(\tau_{0}^{SR} + \alpha \cdot (1+a) \cdot \left(\frac{z(t^{\#})}{K_{0}}\right)^{\chi}\right) + \pi \cdot \left(p_{1}^{SR} + a \cdot \alpha \cdot \left(\frac{r_{1}(t'(t^{\#}))}{K_{0}}\right)^{\chi}\right) + \begin{cases} \beta \cdot (g-\pi) \cdot -t^{\#} \\ \gamma \cdot (g-\pi) \cdot t^{\#} \end{cases}$$

$$p^{LR}(t^{\#}) - mc^{LR}(t^{\#}) = \tau^{LR} + (1-\pi) \cdot \left(\tau_{0}^{SR} - (1+a) \cdot \alpha \cdot \frac{\partial T_{0}(z(t^{\#}))}{\partial z(t^{\#})}\right) + \pi \cdot \left(p_{1}^{SR} - mc_{1}^{SR} + a \cdot \alpha \cdot T_{1}(t'(t^{\#}))\right)$$

$$\tau_{0}^{SR}(t^{\#}) = z(t^{\#}) \cdot \alpha \cdot \frac{\partial T_{0}(z(t^{\#}))}{\partial z(t^{\#})} \qquad \tau_{1}^{SR}(t') = r_{1}(t') \cdot \alpha \cdot \frac{\partial T_{1}(r_{1}(t'))}{\partial r_{1}(t')}$$

$$\tau^{LR}(t^{\#}) = (1 - \pi) \cdot z(t^{\#}) \cdot a \cdot \alpha \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})} - \pi \cdot a \cdot \alpha \cdot T_1(t'(t^{\#}))$$


Intuition

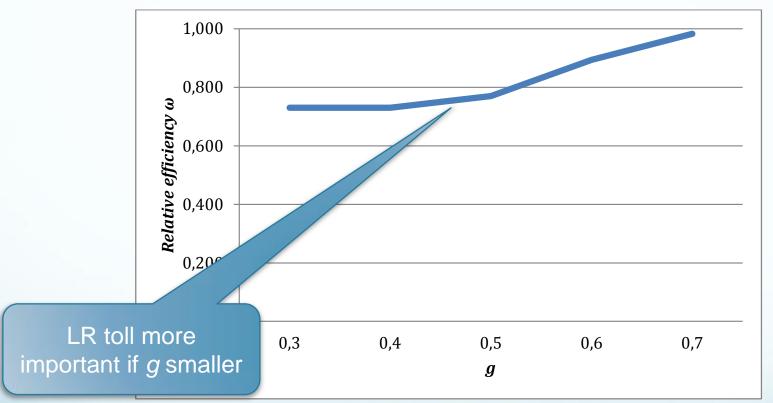
- For state 0, things work as in previous (AD) case
 - LR toll contains a factor $(1-\pi)xa$ times SR toll in state 0
- But for state 1, the congestion externality is dropped
 - Marginal changes in z(t[#]) will not change traffic conditions in state 1: it is a condensed equilibrium
 - So no externality of that type enters the LR toll rule
- Instead, what is subtracted from the LR toll rule is the factor πxax(travel delay in state 1)
 - It is part of the generalized price, but not of the marginal cost for z(t[#])
 - A marginal change in *z*(*t*[#]) does not change these costs

Numerical illustration

2(

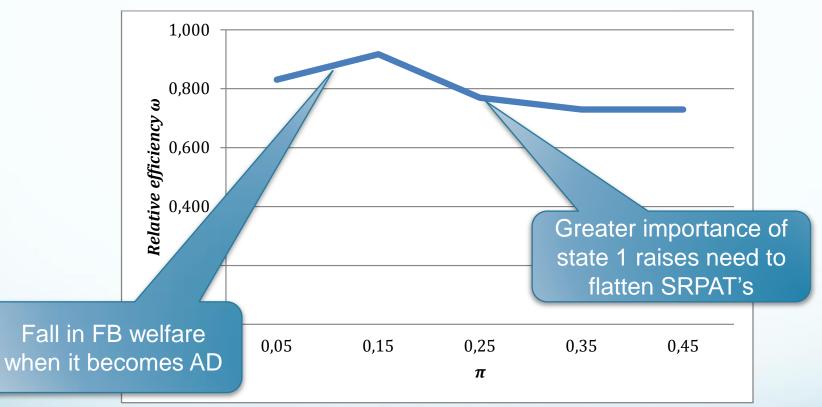
- Parameters:
 - N = 10 000
 - K₀=10 000; K₁=5 000
 - π=0.25
 - x=4
 - α=10
 - β=5
 - γ=20
 - δ=4
 - *a*=3
 - *g*=0.5

- Still, modest cost reduction compared to QFB
 - QFB realizes 77% of FB cost reduction (SD)
 - Absence of LR toll makes SR tolls higher; E peaks near 4


Relative efficiency QFB: a

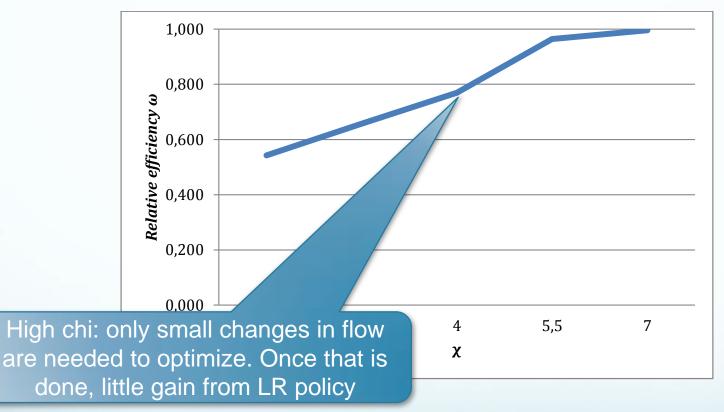
Note: NTE is AD throughout; QFB is SD for $a=\{1,2,3\}$ and AD for $a=\{4,5\}$; FB is SD for a=1 and AD for $a=\{2,3,4,5\}$

Figure 3. Varying a: relative efficiency ω


Relative efficiency QFB: g

Note: NTE is AD throughout; QFB is AD for $g=\{0.3, 0.4\}$ and SD for $g=\{0.5, 0.6, 0.7\}$; FB is AD for $g=\{0.3, 0.4, 0.5, 0.6\}$ and SD for a=0.7

Figure 4. Varying g: relative efficiency ω


Relative efficiency QFB: π

Note: NTE is SD for π =0.05 and AD for π ={0.15,0.25,0.3, 0.45}; QFB is SD for π ={0.05,0.15,0.25} and AD for π ={0.35, 0.45}; FB is SD for π =0.05 and AD for π ={0.15,0.25,0.3, 0.45}

Figure 5. Varying π . relative efficiency ω

Relative efficiency QFB: x

Note: NTE is AD throughout; QFB is AD for χ ={1,2.5} and SD for χ ={4,5.5,7}; FB is AD for χ ={1,2.5,4,5.5} and SD for χ =7

Figure 6. Varying χ : relative efficiency ω

Conclusion

- Long-run toll is needed when short-run and long-run valuations of time diverge
 - Surprisingly, the need is larger for instances if the firstbest is more lightly congested
 - Reason: in a condensed equilibrium, arrival pattern becomes insensitive to marginal changes in desired arrival times
- QFB has relative efficiency that may falls as low as 0.6 in the numerical example used

Congestion pricing with LR & SR scheduling

Congestion pricing with LR & SR scheduling

Solution

- Solution proceeds technically in the same way for the three pricing regimes
 - NT = No Toll
 - QFB = Quasi First-Best: short-run Chu-tolls only
 - FB = First-Best: QFB *plus* possibly a long-run toll to optimize the choice of t[#]
 - Solution differs between AD and SD
 - Main steps:
 - Solve the partial differential equation for z(t[#]) that makes the long-run generalized price constant over time, given the shortrun equilibria (and toll rules)
 - Solve for t_l and t_l that guarantee N drivers and equalized generalized prices at those two moments

Solution Chu model

Generalized price always takes the form (X and d depend on AD vs SD and on pricing regime):

$$p^{LR}(t^{\#}) = X \cdot z(t^{\#})^{\chi} + Cons + \begin{cases} -d \cdot \beta \cdot t^{\#} \\ d \cdot \gamma \cdot t^{\#} \end{cases}$$

$$\dot{p}^{LR}(t^{\#}) = X \cdot \chi \cdot z(t^{\#})^{\chi-1} \cdot \dot{z}(t^{\#}) + \begin{cases} -d \cdot \beta \\ d \cdot \gamma \end{cases} = 0$$

$$z(t^{\#}) = \left(\frac{1}{X} \cdot \left(\begin{cases} d \cdot \beta \cdot (t^{\#} - t_{l}) \\ d \cdot \gamma \cdot (t_{l'} - t^{\#}) \end{cases}\right)\right)^{\frac{1}{\chi}}$$

$$t_{l} = -\left(N \cdot \frac{\gamma}{\beta + \gamma} \cdot \frac{1 + \chi}{\chi} \cdot \left(\frac{X(\phi)}{d \cdot \beta}\right)^{\frac{1}{\chi}}\right)^{\frac{1}{1+\chi}}; \quad t_{l'} = \left(N \cdot \frac{\beta}{\beta + \gamma} \cdot \frac{1 + \chi}{\chi} \cdot \left(\frac{X(\phi)}{d \cdot \gamma}\right)^{\frac{1}{\chi}}\right)^{\frac{1}{1+\chi}}$$

	No-toll equilibrium	First-best optimum	
Short-hand Ψ_i	$\Psi_{i} = \left(\frac{N}{K_{i}} \cdot \frac{1+\chi}{\chi} \cdot \frac{\delta}{\alpha}\right)^{\frac{\chi}{1+\chi}}$		
Arrival rate $r(t')$ early $(t' \le t^*)$	$r(t') = K_i \cdot \left(\frac{\beta}{\alpha} \cdot \left(t' - t_q\right)\right)^{\frac{1}{\alpha}}$	$r(t') = K_i \cdot \left(\frac{1}{1+\chi} \cdot \frac{\beta}{\alpha} \cdot \left(t' - t_q\right)\right)^{\frac{1}{\chi}}$	
Arrival rate $r(t')$ late $(t'>t^*)$	$r(t') = K_i \cdot \left(\frac{\gamma}{\alpha} \cdot \left(t_{q'} - t'\right)\right)^{\frac{1}{\alpha}}$	$r(t') = K_i \cdot \left(\frac{1}{1+\chi} \cdot \frac{\gamma}{\alpha} \cdot \left(t_{q'} - t'\right)\right)^{\frac{1}{\chi}}$	
Early interval: $t^* - t_q$	$t^* - t_q = \Psi_i \cdot \frac{\alpha}{\beta}$	$t^* - t_q = (1 + \chi)^{\frac{1}{1 + \chi}} \cdot \Psi_i \cdot \frac{\alpha}{\beta}$	
Late interval: $t_{q'} - t^*$	$t_{q'} - t^* = \Psi_i \cdot \frac{\alpha}{\gamma}$	$t_{q'} - t^* = (1 + \chi)^{\frac{1}{1 + \chi}} \cdot \Psi_i \cdot \frac{\alpha}{\gamma}$	
Generalized price p	$p = \Psi_i \cdot \alpha$	$p = (1 + \chi)^{\frac{1}{1 + \chi}} \cdot \Psi_i \cdot \alpha$	
Average generalized cost \overline{c}	$\overline{c} = \Psi_i \cdot \alpha$	$\overline{c} = \frac{\left(1 + \chi\right)^{\frac{2 + \chi}{1 + \chi}}}{1 + 2 \cdot \chi} \cdot \Psi_i \cdot \alpha$	
Total travel delay cost <i>TDC</i>	$TDC = \frac{1+\chi}{1+2\cdot\chi} \cdot \Psi_i \cdot \alpha \cdot N$	$TDC = \frac{(1+\chi)^{\frac{1}{1+\chi}}}{1+2\cdot\chi} \cdot \Psi_i \cdot \alpha \cdot N$	
Total schedule delay cost <i>SDC</i>	$SDC = \frac{\chi}{1+2\cdot\chi} \cdot \Psi_i \cdot \alpha \cdot N$	$SDC = \frac{\chi \cdot (1+\chi)^{\frac{1}{1+\chi}}}{1+2\cdot\chi} \cdot \Psi_i \cdot \alpha \cdot N$	
Total toll revenue TR	TR = 0	$TR = \frac{\chi \cdot (1+\chi)^{\frac{1}{1+\chi}}}{1+2\cdot\chi} \cdot \Psi_i \cdot \alpha \cdot N$	
Total social cost C	$C = \Psi_i \cdot \alpha \cdot N$	$C = \frac{\left(1+\chi\right)^{\frac{2+\chi}{1+\chi}}}{1+2\cdot\chi} \cdot \Psi_i \cdot \alpha \cdot N$	
Toll $\tau(t')$	$\tau(t') = 0$	$\tau(t') = \alpha \cdot \chi \cdot \left(\frac{a(t')}{K_i}\right)^{\chi}$ $= \alpha \cdot \chi \cdot (T - T_f)$ $= \frac{\chi}{1 + \chi} \cdot \begin{cases} \beta \cdot (t' - t_q) & \text{if } t' \le t^* \\ \gamma \cdot (t_{q'} - t') & \text{if } t' > t^* \end{cases}$	

Congestion pricing with LR

Note: costs and prices are net of free-flow travel times T_f . Inclusion would require adding αT_f for average cost and generalized price measures, and $N \alpha T_f$ for inclusion in total costs measures. Table 1. Equilibrium and first-best optimum 31