
Optimal Congestion Pricing with 

Diverging Long-Run and Short-

Run Scheduling Preferences 

Erik T. Verhoef 

Department of Spatial Economics, VU University Amsterdam 

 



Introduction 
 Values of travel delays and schedule delays are central 

concepts in transport economics 

 Recent evidence suggests that travellers decompose 
scheduling decisions into 

 long-run choices of routines 

 short-run choices of departure times 

 This paper: implications for optimal congestion pricing 

 Do we need separate instruments to optimize both 
decisions? 
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Deterministic starting point 
Vickrey 1968; Small 1982 
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Departure rate first above 

then below capacity 



Two dimensions of SR vs LR 

1. Different measures for preferred arrival time PAT 

 Long-run LRPAT (t*): preferred arrival time if there were no 

congestion, ever 

 Interpretation in standard bottleneck model 

 Short-run SRPAT (t#): preferred arrival time given the 

expected pattern of travel times 

 Choice of ‘routines’ may make SRPAT deviate from LRPAT 

 With a LRPAT at 9:00, an SRPAT at 7:00, and a scheduled 

meeting at 7:30, an arrival time at 8:30 would bring cost of 

schedule delay late, not early  

 Evident: important to address in empirical modelling 
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Two dimensions of SR vs LR 
2. Different values of time and schedule delay, depending 

on ‘degree of permanentness’ 

 A structural one-minute travel time gain brings more 

benefits per day than an incidental minute on a random 

day 

 An unanticipated schedule delay brings a greater disutility 

than schedule delays that are anticipated when forming 

routines 
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Empirical confirmation 

 Peer, Verhoef, Koster, Knockaert (2015) 

 Drivers plan their routines to avoid congestion 
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Empirical confirmation 



Implications for pricing? 
 Implications for pricing 

 Is a separate regulation of choice of t# desirable, above 

that of trip timing? 

 Peer and Verhoef 2012 

 Bottleneck model 

 Not conclusive on need for LR toll due to corner solutions 
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Henderson-Chu model 
 Alternative to Vickrey – ADL bottleneck 

 Demand-side and scheduling behaviour identical 

 “α β γ” preferences 

 Congestion technology different 

 Vickrey: kinked performance function 

 Chu: smooth performance function 

 Delay is a function of outflow 

 E.g.: power function (“BPR”) 

 Optimal toll: instantaneous application of Pigouvian toll 

 Both have closed-form solutions 

 Also for equilibrium (time-independent) cost (c) and price (p)  
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Main ingredients 

 N identical travellers with “α β γ” preferences 

 LR VoSD fraction g of SR VoSD 

 LR VoT: relative premium of a added to SR VoT 

 SRPAT (t#) endogenous, LRPAT (t*) identical and 0 

 To avoid degenerate problem, we need variation 

between the days 

 Stochastic capacity K: K0>K1 

 Probabilities: (1-π) on state 0; π on state 1 

 On the day itself, all travellers know the realization 
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Main ingredients con’d 
 BPR travel time function 

 Ignore free-flow travel time 

 Delay: (r (t’)/K)
χ 

 Equilibria 

 Short-run: equilibrium distribution of arrival times r(t’) 

 … given the distribution of SRPATs z(t#) and given the 

realization of K 

 Long-run: equilibrium distribution of SRPATs z(t#)  

 … given that short-run equilibria as above will apply 
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LR equilibrium 
 Three candidate types of LR equilibria 

 “Always Dispersed” (AD): values of t# are chosen so 

dispersed that all drivers arrive at t# in both states 

 “Sometimes Dispersed” (SD): density of z(t#) is so high 

that only state 0 is dispersed 

 State 1 is “condensed”: early drivers arrive before their t# and 

late drivers after their t# 

 “Never Dispersed” (ND): both states “condensed”  

 ND is no equilibrium: it always pays off to widen z(t#) to save 

SR SDC and accept increased LR SDC (g<1) 
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Solution 

 Important elements are the “reference arrival rate 

distributions” r0(t’) and r1(t’) 

 These would apply in the basic Chu model with deterministic 

capacity K0 or K1, and with identical t* 

 Actual arrival pattern: 

 Condensed peak: reference arrival pattern 

 Dispersed peak: r(t’) equals z(t#)  

 Everybody arrives on time (at SRPAT) 
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Example: SD-NTE (π = 0.025) 

Congestion pricing with LR & SR scheduling 14 

r0(t’) 

z(t#) r1(t’) 

Actual arr rate 0 



Expected SR cost and LR cost 
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Equilibrium… 



Are long-run tolls needed? AD 
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Intuition 
 To establish short-run optimum in both states, short-run 

tolls must be based on short-run “α β γ” 

 Through Pigouvian form, α in particular 

 But long-run expected travel times are proportional 
(probability-weighted) with short-run travel times 

 Same internalization argument applies 

 Must be a long-run toll in order not to distort short-run 
optima 

 Value of long-run toll is simply a times the expected 
value of short-run tolls 
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Long-run tolls are less strongly 

needed in SD 
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Intuition 
 For state 0, things work as in previous (AD) case 

 LR toll contains a factor (1-π)×a times SR toll in state 0 

 But for state 1, the congestion externality is dropped 

 Marginal changes in z(t#) will not change traffic conditions in 
state 1: it is a condensed equilibrium 

 So no externality of that type enters the LR toll rule 

 Instead, what is subtracted from the LR toll rule is the factor 

π×a×(travel delay in state 1) 

 It is part of the generalized price, but not of the marginal cost for 
z(t#) 

 A marginal change in z(t#) does not change these costs 
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Numerical illustration 
 Parameters: 

 N = 10 000 

 K0=10 000; K1=5 000 

 π=0.25 

 χ=4 

 α=10 

 β=5 

 γ=20 

 δ=4 

 a=3 

 g=0.5 
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First-best (AD) 

 Still, modest cost reduction compared to QFB 

 QFB realizes 77% of FB cost reduction (SD) 

 Absence of LR toll makes SR tolls higher; E peaks near 4 
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LR toll 

E(SR toll) 
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estimate of a from Peer et al. (2015), ω has dropped to 0.6, suggesting that ignoring the nature 

of scheduling decisions with routine formation may, indeed, cause substantial welfare losses. 

 

 
Note: NTE is AD throughout; QFB is SD for a={1,2,3} and AD for a={4,5}; FB is SD for a=1 and AD for 
a={2,3,4,5} 

Figure 3. Varying a: relative efficiency ω  

4.5. Sensitivity analysis II: varying g 

Next, Figure 4 shows the relative efficiency ω of QFB for variation in the ratio of long-run 

versus short-run values of schedule delay, g. 

 

 
Note: NTE is AD throughout; QFB is AD for g={0.3,0.4} and SD for g={0.5,0.6,0.7}; FB is AD for g={0.3,0.4, 
0.5,0.6} and SD for a=0.7 

Figure 4. Varying g: relative efficiency ω  
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LR toll more 

important if a higher 
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estimate of a from Peer et al. (2015), ω has dropped to 0.6, suggesting that ignoring the nature 

of scheduling decisions with routine formation may, indeed, cause substantial welfare losses. 
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important if g smaller 



Relative efficiency QFB: π  
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Again, we see a decline in ω when valuations differ stronger between the short run and the 

long run, now when moving to the left in the figure. The reason is that a low value of g means 

that it is relatively attractive to reduce congestion by having travellers change their routines, 

for which the long-run toll is the most effective instrument. 

 

4.6. Sensitivity analysis III: varying π 

A third parameter of interest is π, the probability of an incident and hence capturing the 

degree of stocahsticity in the system. Figure 5 gives the results. We now see a more volatile 

pattern, which has to do with how regimes change between SD and AD for the different 

equilibria. In particular, the switch for FB from SD to AD raises its cost discretely, which 

makes QFB (for which that switch occurs between 0.25 and 0.35) gain in terms of ω. 

Otherwise, we see ω fall with an increasing volatility, which is intuitive as the greater 

importance of state 1 means that routine scheduling becomes more distinct from departure 

time optimization in state 0, and hence more important for overall efficiency. 

 

 
Note: NTE is SD for π=0.05 and AD for π={0.15,0.25,0.3, 0.45}; QFB is SD for π={0.05,0.15,0.25} and AD for 
π={0.35, 0.45}; FB is SD for π=0.05 and AD for π={0.15,0.25,0.3, 0.45} 

Figure 5. Varying π: relative efficiency ω  

4.7. Sensitivity analysis IV: varying χ 

The final sensitivity analysis involves the curvature of the congestion function, as reflected by 

the power χ. Figure 6 displays the results, and shows how ω rises as the power χ increases. 

The intuition is now that the strong curvature of the congestion function means that only 

relatively small changes in flow are needed to reduce most congestion. Once the short-run 

tolls have achieved this, there relatively little to gain from further changes in routines. The 

implication is that the explicit consideration of long-run scheduling decisions can be expected 

to bring greater benefits for congested networks, for which χ is typically lower as interactions 

at for instance crossings cause congestion to set in at relatively lower use levels, than for 

single facilities. 
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Relative efficiency QFB: χ 
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Note: NTE is AD throughout; QFB is AD for χ={1,2.5} and SD for χ={4,5.5,7}; FB is AD for χ={1,2.5,4,5.5} 

and SD for χ=7 

Figure 6. Varying χ: relative efficiency ω  

5. Conclusion 

Recent empirical work has suggested that there is an important distinction between short-run 

and long-run scheduling behaviour of commuters. Peer et al. (2015) for example find that the 

average value of time when consumers form their routines in the long-run problem may 

exceed by a factor 6 the short-run value that governs departure time choice given these 

routines. For values of schedule delay, in contrast, the short-run value exceeds the long-run 

value, by a factor 2. And, when forming routines, consumers in fact choose a most preferred 

arrival time that may deviate from the value they would choose in absence of congestion 

because a change in routines may mean that shorter delays will be encountered. 

This paper has investigates whether this distinction between short-run and long-run 

scheduling decisions affect optimal pricing of a congestible facility. The framework 

developed rests on a stochastic generalization of the Henderson-Chu dynamic model of flow 

congestion for describing short-run equilibria. This system was fully integrated with a 

dynamic model of routine formation. 

The paper’s main conclusion is that consistent application of short-run first-best 

optimal congestion pricing does not optimally decentralize the optimal formation of routines 

in the long-run problem. A separate instrument is therefore needed to optimize routine 

formation. In the analysis, it was assumed that for this purpose, an optimal tax instrument is 

available to affect consumers’ choices of the preferred arrival times for their short-run 

problems, their SRPAT’s. In practice, it may not be easy to implement such a tax, since the 

choice of SRPAT’s cannot be observed. The results indicate that in such cases, second-best 

instruments that would affect the choice of SRPAT’s, such as subsidies on staggered work-
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Conclusion 
 Long-run toll is needed when short-run and long-run 

valuations of time diverge 

 Surprisingly, the need is larger for instances if the first-

best is more lightly congested 

 Reason: in a condensed equilibrium, arrival pattern 

becomes insensitive to marginal changes in desired 

arrival times 

 QFB has relative efficiency that may falls as low as 0.6 

in the numerical example used 
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Solution 
 Solution proceeds technically in the same way for the three 

pricing regimes 

 NT = No Toll 

 QFB = Quasi First-Best: short-run Chu-tolls only 

 FB = First-Best: QFB plus possibly a long-run toll to optimize the 
choice of t# 

 Solution differs between AD and SD 

 Main steps: 

 Solve the partial differential equation for z(t#) that makes the 
long-run generalized price constant over time, given the short-
run equilibria (and toll rules) 

 Solve for tl and tl’ that guarantee N drivers and equalized 
generalized prices at those two moments 
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Solution Chu model 

Congestion pricing with LR & SR scheduling 30 



Chu 
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