

Directed technical change and the resource curse

Knut Einar Rosendahl School of Economics and Business Norwegian University of Life Science

Introduction

- Resource curse:
 - Abundant natural resources may hamper economic growth
- Possible reasons:
 - Political failures (Robinson et al., 2014)
 - Lack of technological progress (van der Ploeg, 2011)
- This paper:
 - Wrong type of technological progress?

Introduction

- Focus: Fossil fuels currently (highly) profitable
 - Example: Norway!
- Future profits may be reduced for two main reasons:
 - Depletion effect \rightarrow Higher extraction costs
 - Global climate policy \rightarrow Lower prices
- Are current R&D activities optimally allocated?
 - Clean vs. dirty technology
 - Cf. Acemoglu et al. (2012): Directed technical change and path dependency
 - Does the innovation market need some correction?
 - Risk of becoming a laggard in new green technologies?

Our framework

- Small open economy with energy produced by non-renewable ("dirty") and renewable ("clean") resources
 - Prices of dirty and clean energy are given from abroad
 - → Disregard energy consumption
 - Future price paths for dirty and clean energy crucial
 - Scientists can be used in either clean or dirty innovation
 - Dirty innovation is initially more profitable
 - Standing on shoulders of previous research
 - Assume that scientists are short-sighted
 - Non-renewable resource costs increase with accumulated extraction
 - Accounted for by non-renewable producers? (Heal, 1976)
- Theoretical and numerical analysis

Our framework

- Main question:
 - Will innovation markets induce a switch away from fossil fuels to clean technologies in time?
 - Or will innovators be locked in by history, leading to resource curse?
 - How do market failures in non-renewable extraction and R&D interact?
 - → How do optimal R&D activities compare with BaU?
 - \rightarrow What are optimal (or second-best) policies?
- Point to two main effects:
 - Technology effect:

Scientists do not factor in positive knowledge externalities on future R&D

– Price effect:

Scientists do not factor in changes in future energy prices

Previous literature

- Resource curse
 - Robinson et al. (2014); van der Ploeg (2011)
- Directed technical change and the environment
 - Acemoglu et al. (2012): Seminal paper
 - Technological change within energy technologies may be path dependent
 - \rightarrow Need to redirect innovation towards clean technologies
 - Many follow-up studies
 - E.g. Acemoglu et al. (2016); Greaker et al. (2018); Hart (2019); Lemoine (2020)
 - None of these include non-renewable resource extraction
 - Hassler et al (2021): Only non-renewable resource (no clean energy)
- Standing on shoulders forever?
 - Pope et al. (2013): Fishing out in the long run

- Builds on (and modify) Acemoglu et al. (2012)
- Energy production of type *j*:

$$Y_{jt} = R_{jt}^{\alpha_2} \int_0^1 A_{jit}^{1-\alpha_1} x_{jit}^{\alpha_1} di,$$

- -j = c (clean), d (dirty)
- R: Energy resource
- x: Machine variants
- A: Quality of machines (technology level)
- Costs of non-renewable resource extraction:
 - Q: Accumulated extraction
 - Constant unit costs of clean (renewable) resource
- Assumption: Producers of dirty energy disregard depletion effect
 - \rightarrow Extraction tax necessary to implement optimal solution

 $c_{dt} = c(Q_t)$ c' > 0, c'' > 0

- Each machine type is the result of an innovation
 - Heterogeneous machines \rightarrow Monopolistic competition
 - Market power corrected for by subsidy \rightarrow Efficient use of each machine type
- Innovation:
 - Total number of scientists is given:
 - Each scientist chooses whether to do course with the science of the science of
 - Innovations occur with an endogenous probability:
 - Decreasing returns to R&D within each period and for $\mathbf{e}_{i}^{\eta_{j}}\ell_{jt}^{\varpi},$ ology
 - Quality of machines increases with new innovations:

•
$$\gamma = \mathbf{Q}_{j:t} \mathbf{Q}_{t} \mathbf{Q}_{t} \mathbf{Q}_{t} \mathbf{Q}_{t} \mathbf{Q}_{t} \mathbf{Q}_{jt} \mathbf{Q}_{jt} \mathbf{Q}_{jt} \mathbf{Q}_{t} \mathbf{Q}_{t}$$

• v_j : Arrival of foreign innovation (mostly disregarded in the analysis)

- Innovation (cont.):
 - Assume that scientists (innovators) only earn profit in the first period
 - Following Acemoglu et al. (2012)
 - Derive following arbitrage condition (equal profit from clean and dirty R&D):

$$\underbrace{ \frac{\ell_{ct}}{\ell_{dt}}}_{\bullet} = \left(\frac{(1+s_{ct})\eta_c \left(P_{ct}R_{ct}^{\alpha_2}\right)^{\frac{1}{1-\alpha_1}}A_{ct-1}}{(1+s_{ct})\eta_d \left(P_{dt}R_{dt}^{\alpha_2}\right)^{\frac{1}{1-\alpha_1}}A_{dt-1}} \right)^{\frac{1}{1-\omega}}$$

• Proposition 1.

More researchers will be allocated to a sector *j*

- i. the higher is the current final product price P_{jt}
- ii. the lower is the current private resource cost $c_{jt} + \tau_{jt}$
- iii. the higher is the existing level of technology A_{it-1}

• The social planner maximizes NPV of energy production:

$$\max_{L_{jt},\ell_{jt},R_{jt},Y_{jt}}\sum_{t=0}^{\infty}\frac{1}{(1+r)^{t}}\left[\sum_{j}P_{jt}Y_{jt}-\psi\left(\int_{0}^{1}x_{cit}di+\int_{0}^{1}x_{dit}di\right)-c_{dt}R_{dt}-\bar{c}R_{ct}\right]$$

• This gives the following condition for optimal allocation of scientists:

$$\frac{\ell_{ct}^S}{\ell_{dt}^S} = \left(\frac{\frac{A_{ct-1}}{A_{ct}} \sum_{k=0}^{\infty} (\frac{1}{1+r})^k P_{c,t+k} Y_{c,t+k}}{\frac{A_{dt-1}}{A_{dt}} \sum_{k=0}^{\infty} (\frac{1}{1+r})^k P_{d,t+k} Y_{d,t+k}} \right)^{\frac{1}{1-\varpi}},$$

• Compared with BaU-condition (with $s_{jt} = 0$ and $\eta_c = \eta_d$):

$$\frac{\ell_{ct}^{M}}{\ell_{dt}^{M}} = \left(\frac{\frac{A_{ct-1}}{A_{ct}}P_{ct}Y_{ct}}{\frac{A_{dt-1}}{A_{dt}}P_{dt}Y_{dt}}\right)^{\frac{1}{1-\alpha}}$$

• Message:

While the innovation market only considers current profits from energy production, the social planner also considers future profits

- What are the implications for R&D subsidies and direction of technical change?
 - Distinguish between *technology effect* and *price effect*

• Technology effect:

Proposition 2 Along an optimal subsidy path where the socially optimal $A_{j,t+k}$ are induced in the market while the price $P_{j,t+k}$ and the resource $\cot \chi_{d,t+k}$ are fixed for $j \in c, d$ for all k, the optimal subsidy s_{jt}^* at time t is increasing in the socially optimal allocation of scientists $\ell_{j,t+k}^S$ for any k > 0.

- In plain words: The more scientists should do clean R&D in the *future*, the higher is the optimal subsidy to clean R&D *today*
 - Scientists of today do not take into account the knowledge spillover for the future
 - Standing on shoulders
- Thus: If the clean transition is coming (or should come), it should be accelerated

• Price effect:

Proposition 3 For fixed technology $\hat{A}_{j,t+k}$ and resource $\cot \chi_{d,t+k}$ for $j \in c, d$ for all k, the optimal subsidy s_{jt}^* at time t is:

i) unchanged if the percentage fall in prices $P_{j,t+k}$ is the same for all k;

ii) lower if the percentage fall in prices $P_{j,t+k}$ is larger for at least one k than the price fall at time t (and the price fall is at least equal to the price fall at time t for all other k);

iii) higher if the percentage fall in the price $P_{j,t+k}$ is larger at time t than the price fall for any k.

- In plain words: A gradually declining price of dirty energy in the future implies a higher optimal subsidy to clean R&D *today*
 - Future drop in profitability of dirty energy is not taken into account in the market

- Cost effect: Similar (but opposite) as Proposition 3 \rightarrow Proposition 4
- In plain words: Gradually higher extraction costs imply a higher optimal subsidy to clean R&D today

• Corollary on extraction tax:

Corollary 1 For fixed technology $A_{j,t+k}$ and price $P_{j,t+k}$ for $j \in c, d$ for all k, the optimal subsidy s_{jt}^* at time t is higher if the percentage rise in the extraction tax $\tau_{d,t+k}$ is larger at time t than the rise for any k > 0.

 In plain words: Introducing (or increasing) extraction tax today implies a lower optimal subsidy to clean R&D today

Resource curse

• Our definition:

Definition 1 The economy is in a state of (technology) resource curse if along the laissez fair growth path, more researchers are allocated to dirty innovation than clean innovation in each period, i.e., $\ell_{dt}^{M} > \ell_{ct}^{M} \forall t$, while there exist alternative development paths that give higher wealth as given by (16) in which more researchers are allocated to clean innovation than dirty innovation from a period T onwards, i.e., $\ell_{dt} < \ell_{ct} \forall t > T$.

Numerical simulations

- Straightforward parameterization of the analytical model
 - Mostly based on previous studies
 - 5-years periods simulated for 150 years (display 100 years)
- Consider four scenarios that differ according to:
 - Technology distance between clean and dirty (A_c vs. A_d)
 - How much behind is clean technology? 40% vs. 60% below initially
 - Future price path for dirty energy
 - Constant: "Business as usual"
 - Declining: "Global climate policy" (5% reduction per period)
- Consider four policy cases
 - Laissez fair (BaU); First best with optimal R&D subsidy and extraction tax; Secondbest policies with either subsidy or tax

Technology distance Large Small Dirty Constant S I S III price Declining S II S IV P&D subsidy and sytraction taxy Second

Scenarios: 4 different types of outcome

- 1. Steady course
 - Keeping on extracting fossil fuels is *optimal* since the increasing extraction cost can be counteracted by focusing R&D effort in the dirty energy sector
- 2. Resource curse due to global climate policy
 - Keeping on extracting fossil fuels is *not optimal* when the fossil fuels price decreases, but the private sector does not shift to clean R&D
- 3. Resource curse with no global climate policy
 - Keeping on extracting fossil fuels is *not optimal* even if the fossil fuels price stays constant, but the private sector does not shift to clean R&D
- 4. Induced change in course due to climate policy
 - Keeping on extracting fossil fuels is *not optimal*, and the private sector shifts R&D efforts to the clean energy sector without intervention from the government

Technology distance Large Small Dirty Constant S I S III price Declining S II S IV

Scenario I: Steady course

Panel a) Petroleum resource extraction

Panel c) Allocation of researchers to dirty R&D

Panel b) Relative profits in clean versus dirty energy production

Scenario II: Resource curse due to global climate policy

Panel a) Petroleum resource extraction

Panel c) Allocation of researchers to dirty R&D

Panel b) Relative profits in clean versus dirty energy production

Scenario III: Resource curse with no global climate policy

Panel a) Petroleum resource extraction

Panel c) Allocation of researchers to dirty R&D

Panel b) Relative profits in clean versus dirty energy production

Technology distance

Small

S III

STV

Large

SΙ

SII

Scenario IV: Induced change in course due to climate policy

Panel a) Petroleum resource extraction

Panel c) Allocation of researchers to dirty R&D

Panel b) Relative profits in clean versus dirty energy production

Technology distance

Small

S III

S IV

Large

Wealth effects

Scenarios	Ι	II	III	IV
BaU	3.5 2	2.40	4.17	3.65
Optimal	3.96	2.89	5.00	4.43
2nd best subsidy	3. <mark>5</mark> 3	2.82	4.84	4.37
2nd best tax	3.95	2.56	4.59	3.91
(Optimal-BaU)/BaU	12.5%	20.4%	20.0%	21.4%
(2nd subsidy-BaU)/(optimal-BaU)	0.3%	85.6%	80.5%	92.6%
(2nd tax-BaU)/(optimal-BaU)	97.9%	31.3%	50.7%	33.4%

- Most interesting comparison: Between 2nd best subsidy and 2nd best tax
- Scenario I: Tax clearly most important
- Scenarios II-IV: Subsidy much more important (almost 1st best in S IV)

Arrival of innovation from abroad

- So far: Only domestic innovation
- What if innovation arrives exogenously from abroad?
 - Assume equal impulse for dirty and clean
 - Assume (approx.) equal impulse from domestic and foreign innovation
 - Assume (approx.) same total impulse as with only domestic innovation
- Two main insights:
 - No longer optimal with subsidies to dirty R&D in Scenario I
 - R&D subsidies are less important than before
 - In some scenarios the extraction tax is more important

Summing up

- Technological progress is path dependent
 - \rightarrow May be need to direct technical change (Acemoglu et al., 2012)
- Abundance of fossil fuel resources may exacerbate the need to direct technical change
 - Future profitability may be hampered by increasing extraction costs and global climate policy
- \rightarrow May risk a resource curse
- Some discussion points / caveats:
 - How short- or farsighted are innovators and extractors?
 - Are clean and dirty technologies completely different types, or are there spillovers?

THANKS FOR THE ATTENTION!

