Global Climate Governance in the Light of Geoengineering: A Shot in the Dark? Michael Finus

Chair in Climate and Environmental Economics University of Graz

together with

Dr Franceso Furini, University of Hamburg

mitigation

adaptation geoengineering carbon capture technology (CCT) solar radiation management (SRM) • Does the possibility of deploying geoengineering (SRM) reduce mitigation efforts?

• How does SRM affect the governance architecture of climate agreements and what are the prospects of avoiding the unilateral deployment of SRM?

Weitzmann 2015

- "gob" (good and bad)
- unilateral action: "free-driving behaviour"
- voting on the deployment of SRM by super majority
- grand coalition managing SRM

Ricke et al. (2013)

- coalition formation game
- only signatories decide on SRM
- non-signatories want to join to have a say
- grand coalition stable managing SRM

Heyen et al. (2019)

geoengineering and "countergeoengineering"

Fabre and Wagner (2020)

mitigation as a weakest-link game, geoengineering can be avoided

Millard-Ball (2012)

mitigation as a summation game

geoengineering as a second strategy

coalition formation: cartel formation game

mitigation and geoengineering are strategic substitutes

Millard-Ball (2012)

Result: The grand coalition can be stable, avoiding the deployment of geoengineering (Avoidance-equilibrium) in the light of the threat to deploy geoengineering if a country leaves the agreement. This works if the collateral damages of geoengineering are sufficiently large.

lower bound of collateral damages

Millard-Ball (2012)

Problems:

- parameter space of scenario not observed
- incorrect specification of free-rider payoff
- other possible policy scenarios not treated
- only grand coalition considered

- 1. countries chose membership
- 2. countries chose mitigation level
- 3. countries chose geoengineering

$$\pi_{i\in K}(k) \ge \pi_{i\notin K}(k-1)$$
$$\pi_{j\notin K}(k) \ge \pi_{j\in K}(k+1)$$

Model

g = benefits from geoengineering

d = collateral costs from geoengineering Q < g geoengineering deployed $Q \ge g$ geoengineering not deployed

Model

Possible equilibria for a coalition of size k:

- 1. Mitigation-Equilibrium, standard mitigation game if $Q^*(k) \ge g \ (z_i^* = 0).$
- 2. Geoengineering-Equilibrium with some mitigation, $Q^*(k) < g$ and $z_i^* = 1$.
- 3. Avoidance-Equilibrium with sufficient mitigation, $Q^*(k) = g(z_i^* = 0)$.

Figure 1: Policy Scenarios

 $k^* = k$

 $k^* = k$

 $k^* = 1$

 $k^* = 3$ $k^* = 3$ $k^* = 1$

Figure 1: Pure Policy Scenarios (Case 1, 2 and 3)

Figure 1: Policy Scenarios

with $1 < k \le n$

Figure 2: Mixed Policy Scenarios (Case 4, 5 and 6)

CONCLUSIONS

• An Avoidance and Mitigation-Equilibrium can be enforced through the threat of the deployment of geoengineering in case a signatory leaves the agreement.

- This requires that collateral damages are sufficiently high so that the deployment of geoengineering does not pay when cooperating.
- However, collateral damages cannot be too high, as otherwise the threat of the deployment of geoengineering is not credible if a country takes a free-ride.

CONCLUSIONS

• Results also hold if the assumption is given up that only one random country deploys geoengineering.

• Results also hold if analyzed in a repeated game.

• The larger the agreement which shall be stabilized, the lower!!! must be the range of collateral damages.