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Abstract

We examine the response of technological change to one of the major environmental

regulations in the European Union (EU) � the Ambient Air Quality Directive (AAQD).

Our identi�cation strategy exploits the structure of this directive, which imposes air

quality measures in regions exceeding pollutant concentration limits. We implement a

quasi di�erence-in-di�erences strategy and test for the e�ect of environmental measures

on innovation in 654 technology classes at the EU region (NUTS-2) level over the 1999-

2015 period. We show that AAQD environmental measures drive the specialisation of

regions in green technologies. We �nd a positive e�ect for patents in the two most

prevailing green technology classes, i.e., clean energy and industrial processes, as well

as evidence of spatial leakage.
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1 Introduction

In many countries, policy e�orts have been undertaken to improve air quality. National

Ambient Air Quality Standards (AAQS) that limit local air pollutant concentrations have

been implemented in 109 out of 194 countries, and most developed and emerging economies

have established binding rules and regulations to commit to these standards (UNEP, 2016).1

These regulations are all the more necessary given the multiple consequences of air pollution.

Apart from health e�ects, air pollution also negatively a�ects key ecosystems, like forests or

freshwater, might exacerbate pandemics and contributes to accelerating climate change. It

is now established that air pollution and climate change are closely interlinked (EEA, 2016).

However, the ability of air pollution regulations to temper climate change and its associated

costs largely depends on their impact on technological change.

Do air pollution regulations stimulate innovations that mitigate climate change? By impos-

ing limits on polluting emissions or by increasing their costs, these measures should a�ect

the direction of technological change (Acemoglu et al., 2012). Firms might respond to the

regulation by investing in innovative technologies that reduce the cost of complying with the

regulation (Brunnermeier and Cohen, 2003). However, redirecting technological change is

not straightforward due to path dependence (Aghion et al., 2016) and because environmental

regulation in one country could divert polluting activities toward less regulated countries

via trade or investment �ows (Bagayev and Lochard, 2017). The answer to this question is

largely an empirical matter. In this paper, we provide the �rst comprehensive examination

of the causal e�ect of air pollution regulation on specialisation in green innovations.

We implement a quasi di�erence-in-di�erences strategy to test for the impact of air pollu-

tion measures on innovation in 654 technology classes in 273 European Union (EU) NUTS-2

regions over the 1999-2015 period. We rely on the major EU air policy � the Ambient Air

Quality Directive (AAQD). This directive sets numerical limits and thresholds for di�erent

1The Clean Air Act since 1963 in the U.S., the Air Pollution Control Act since 1968 in Japan or the Law

on Prevention and Control of Air Pollution (Air Law) since 1987 in China are a few examples around the

world.
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types of pollutants and requires countries to implement and enforce environmental measures

at the local level in case of exceedance. Our identi�cation strategy takes advantage of the

design of this directive, which is applicable in the entire EU and provides an arguably exoge-

nous environmental stringency change that varies on a region-year basis. As such, it o�ers a

unique opportunity to consistently analyse the full policy impact of air pollution regulations

on green innovations.

We �nd that air quality measures a�ect specialisation in green innovations within the EU. Our

analysis yields three main insights. First, regions that implement additional environmental

measures tend to innovate more in energy sources alternative to fossil fuels and in green

technologies related to the production or processing of goods, representing approximately

half of green innovations. The contemporaneous direct consequence of the regulation is an

increase in patents of 6 to 13% in these two classes, while the cumulative e�ect occurring

through a rise in the stock of green patents is between 12 and 26%. Second, the regulation has

no impact on green innovations in transportation, the second largest class of green patents

in Europe. Third, we �nd evidence of spatial leakage. Some environmental measures trigger

specialisation in local green innovations but, at the same time, reduce them in proximate

regions. Our results are supported by a placebo test based on the speci�c design of the

regulation and are robust to confounding factors and to other sources of endogeneity.

This paper relates to the literature on directed technical change (e.g., Acemoglu, 2002, Ace-

moglu and Finkelstein, 2008), in particular on the forces shaping technical change towards

greener innovations (Acemoglu et al., 2012, Acemoglu et al., 2016). As technology is path

dependent, a crucial point in this literature is that policy intervention is necessary to achieve

sustainability goals and to do so at a lower cost. A growing number of papers focus empir-

ically on the role of carbon pricing in inducing clean innovation. An important part of this

literature looks at the e�ect of energy prices on directing technological change towards speci�c

innovations (Newell et al., 1999, Popp, 2002).2 In particular, Aghion et al. (2016) analyse

2The early empirical literature investigates the link between environmental policies and technological

change at the sector or country level (see Popp et al., 2010, for a review). One of the challenges encountered

in this literature is, however, to determine the causal e�ect of environmental regulation. The presence of third
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the auto industry and show that �rms tend to innovate more in clean technologies, such as

electric or hybrid vehicles, when tax-inclusive fuel prices are higher. Moreover, they depict a

path dependence pattern: �rms that used to innovate in clean (resp. dirty) technologies in

the past will also tend to innovate in clean (dirty) technologies in the future. Another paper

by Calel and Dechezleprêtre (2016) uses �rm-level data to investigate the role of carbon pric-

ing through the impact of the European Union Emissions Trading system (EU-ETS) on the

number of low-carbon patents. Using quasi-experimental techniques, comparing regulated

and comparable non-regulated �rms before and after the launch of the EU-ETS in 2005, they

show that the EU-ETS increases the number of low-carbon patents among regulated �rms

by less than 10% (183 additional patents). This explains just 1% of the overall increase in

low-carbon patenting because regulated �rms only account for a small share of all patents.3

We contribute to these recent developments in the literature by providing empirical evidence

on the causal e�ect of air pollution regulation in directing technical change. The AAQD

is the largest and most important environmental legislation of its kind in the EU, which

would, as such, make it a compelling policy to study. However, more importantly, it allows

analysing, at a granular regional level, the full spectrum of patented innovations in the entire

EU to consistently isolate a sizeable impact of air quality regulation. The regional level is the

appropriate unit of observation because most air quality measures are implemented at this

level. Furthermore, there is ample evidence that innovative activity is highly localised and

that knowledge spillovers are geographically bounded (e.g., Audretsch and Feldman, 2004).

We also add to the literature looking at the economic e�ects of air quality regulations. Po-

tential consequences of these regulations have been investigated in several areas, including

health, pollution, labour, economic activity, FDI and housing prices (see, for example, Green-

factors, including unobserved technology shocks, that in�uence both regulatory stringency and technological

change and reverse causality running from innovations to environmental policies are potential sources of

endogeneity.

3The �rm-level analysis probably leads to an underestimation of the policy e�ect because �rms that are

not directly covered by the regulation might also be a�ected. In our research work, we identify the impact of

environmental regulation at the regional level, which seems to be the most appropriate level of analysis (see

below).
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stone, 2002, Hanna, 2010, Walker, 2011, Greenstone and Hanna, 2014, Bento et al., 2015,

Gibson, 2019, Anderson, 2020, or Currie and Walker, 2019 for a recent review).4 However,

relatively little is known about their impact on innovations. A few papers investigate trends

in speci�c technologies after the implementation of air quality standards. In particular, the

work by Popp (2006) uses patent data to analyse international �ows of innovations between

the United States, Japan, and Germany in pollution control technologies designed to reduce

emissions of nitrogen oxide (NOx) or sulphur dioxide (SO2) from coal-�red power plants. His

results suggest that inventors in these speci�c technologies respond to regulatory pressures

in their own country, but not to foreign pressures. However, these �ndings might be biased

by technology or macroeconomic confounding e�ects. Our paper complements this literature

and provides evidence of a causal impact of air quality policy on the direction of technical

change, which is not narrowed down to one speci�c policy instrument, technology or sector.

In the next section, we present our empirical strategy, identi�cation and data. Then, in

Section 3, we report our main results on the e�ect of environmental regulation on green

innovations. In Section 4, we discuss endogeneity issues. Finally, in Section 5, we summarise

our main �ndings.

2 Methodology and data

2.1 Empirical strategy

Our aim is to assess the e�ect of environmental measures on innovation at the regional

level. Our identi�cation relies on a quasi di�erence-in-di�erences setting including a wide

range of �xed e�ects to control for omitted variables. This design allows us to evaluate

whether patenting activity in green technologies is disproportionately more a�ected in regions

enforcing additional air pollution regulations.

4Most of the papers in this literature analyse the impact of regulations induced by the U.S. Clean Air

Act. One exception using the EU case studying the e�ect of the AAQD on redirecting pollution-intensive

imports is Bagayev and Lochard (2017).
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The basic Poisson speci�cation is as follows:

Patentsrct = exp(α1(1− δ)Krct−1 + α2RegAQrt ×Greenc

+ α3RegAQrt × Compc + γrc + γc1t + γrt) + εrct (1)

where Patentsrct is the count of patents in EU region r applied for a given technology

class c at the 4-digit level and year t.5 (1 − δ)Krct−1 is the region's knowledge capital as

given by the stock of patents in the previous period depreciated by a rate δ.6 RegAQrt

is the measure of a region's environmental regulation change due to the exceedance of a

given pollutant concentration as imposed by the EU Ambient Air Quality Directive (see

Section 2.2), and Greenc is a dummy variable capturing the class of patents pertaining to

the �technologies or applications for mitigation or adaptation against climate change�, i.e.,

classes Y02 and Y04S in the Cooperative Patent Classi�cation. In further re�nements of our

results, we study how regulations related to di�erent pollutants a�ect di�erent subclasses of

green technologies (see Section 2.3 and Table A4 in the Appendix for further details). As

technologies can be related to one another, we isolate the e�ect of environmental regulation on

green innovations from its e�ect on other technology classes by controlling for technologies

that are complementary to green classes. More precisely, we include an interaction term

between the variable of environmental regulation and a dummy capturing whether a given

non-green class is complementary to each Y02/Y04S class (Compc, see Section 2.3 for further

details and the Appendix for the construction of this variable). γrc are technology class-region

�xed e�ects, γrt are region-year �xed e�ects and γc1t are class (1 or 4-digit)-year �xed e�ects.7

5All variables and sources are de�ned in the Appendix (Table A1).

6Stocks are constructed using the perpetual inventory method with the knowledge depreciation rate set

at 20% (e.g., Aghion et al., 2016). The value of a given patent is set to zero after 20 years. We use the inverse

hyperbolic sine (IHS) transformation for the stock variable rather than the log transformation because it is

de�ned for zero values; it is similar to a log and can be interpreted as percentage impacts, except for small

values of the stock variable.

7The inclusion of the 4-digit class × year �xed e�ects (in addition to the 4-digit class × region and

region × year �xed e�ects) for all technology classes is computationally burdensome because of the size of
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All these �xed e�ects are crucial to control for regional specialisation in innovative activity,

region-speci�c shocks, and technology trends and shocks common to all regions. Finally, εrct

is the usual error term.

Equation (1) allows comparing specialisation in green (vs. non-green) innovations of regions

that implement additional environmental measures and specialisation of similar regions that

do not. The coe�cient of interest, α2, measures any di�erence between the two after con-

trolling for all major innovation determinants at the regional level, which can therefore be

attributed to environmental regulation. One important assumption underlying our identi�-

cation strategy is that there are no other region-class time-varying factors correlated with the

treatment that we consider (environmental measures). We further discuss this assumption

and test the robustness of our results by estimating our model on di�erent subsamples and

by introducing additional control variables varying at the region-class-year (rct) level (see

Section 3.2).

Because our dependent variable is a count of patents, we use a Poisson model and a high-

dimensional �xed e�ects procedure extended to nonlinear models (see Guimaraes and Por-

tugal, 2010). This procedure allows us to include up to 92,114 �xed e�ects on a sample of

1,198,944 observations.8

the matrix to estimate and the loss of degrees of freedom. To overcome this problem, we incorporate in our

estimations 4-digit class × year �xed e�ects for green technology classes only and 1-digit class × year �xed

e�ects for other classes. This accounts for the fact that we can observe a general increasing trend for some

green technologies (e.g., clean energy) and a negative trend for others (e.g., capture and storage of greenhouse

gases), independent of whether the region has to implement environmental measures.

8In the original sample, approximately half of the region-technology class pairs and 5% of the region-year

pairs have zero patents or are singletons. Singletons can be perfectly predicted in-sample with �xed e�ects

and do not add any useful information for the estimates. On the other hand, they can bias the calculation

of clustered standard errors and considerably slow down the computation of the maximum likelihood. Our

estimation routine thus excludes singletons from the estimation, which explains why out of 3,035,214 (=

654× 273× 17) potential observations, our sample is composed of 1,198,944.
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2.2 Environmental regulation measure

Our proxy variable for environmental regulation is based on the Ambient Air Quality Direc-

tive (2008/50/EC). The AAQD is the main regulation to �ght air pollution in EU member

states. It sets numerical limits and thresholds for the most prevalent air pollutants (see Ta-

ble A2 in Appendix) and forces EU countries to implement environmental measures in case

of exceedance.

The general principles of the regulation are as follows.9 For the purposes of air quality

assessment and monitoring, member states have to de�ne geographical areas within their

territories. These zones include all agglomerations with a minimum population of 250,000

inhabitants and generally correspond to administrative regions. Air pollution concentration

is measured by more than 4,000 stations located in these regions and distributed across the

EU. The AAQD then requires member states to draw up and report detailed plans and

programs for zones in which at least one pollutant exceeds its limit value to fall below the

limit value. These measures include medium- or long-term actions, such as the development

and the adoption of environmentally friendly innovations, as well as short-run actions (e.g.,

suspensions or restrictions of polluting activities contributing to non-attainment, tra�c re-

strictions). Firms might directly respond to the regulation by developing innovations that

allow them to comply with air quality standard or to reduce the cost of the regulation. The

link to innovation might also be more indirect if higher adoption of green innovations in regu-

lated zones creates a demand-pull for green technologies and therefore fosters innovation. In

this setting, we expect AAQD to more generally a�ect environmentally friendly innovations

and not only innovations targeting one pollutant or another.

We focus here on compliance with limit values for two major pollutants, particulates (PM10)

and nitrogen dioxide (NO2). They represent the target of most (68%) air quality plans imple-

mented since 2004 (see also EEA, 2018) and are the most reported pollutants by monitoring

stations (73% of all station-years over 1999-2015 for NO2 and 62% for PM10).

An important characteristic of the AAQD is that these limit values are legally binding,

9A detailed description of the regulation is provided in the Appendix.
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meaning that judicial actions may be undertaken if a member state fails to comply with

the regulation. For PM10 and NO2, eight countries have recently referred to the Court of

Justice for systematic and continuous exceedance in several regions. As a robustness check,

we exclude these regions from the sample, considering that they have not fully implemented

environmental measures to comply with the regulation (see Section 3.2).

Finally, most environmental measures are decided and implemented at the regional level.10

Among the 51,530 measures reported for the years 2012 to 2016, 89% are local or regional

and 11% are national.11 Therefore, in our empirical analysis, we consider the regional level to

be the most appropriate because the environmental measures and constraints faced by �rms

are essentially perceived at this level.

We use exceedances of limit values for NO2 and PM10 pollutants as proxies for changes in

environmental stringency. More precisely, we construct, for each NUTS-2 region and year,

a dummy variable (RegAQ) that measures exceedances of air quality limit values for each

pollutant after the entry into force of the regulation (2005 for PM10 and 2010 for NO2;

limit values are displayed in Table A2 in Appendix). This variable does not evaluate the

overall level of environmental policy stringency but rather additional environmental measures

implemented by EU regions to comply with the AAQD. In our empirical estimations, we also

use an alternative variable for RegAQ: the average exceedance level above the limit value

(average number of days or times of exceedance by region and year) over the allowed level.12

This variable intends to measure the magnitude of exceedances, which should correlate with

the stringency of the regulation.

Figure A1 in the Appendix displays the average number of exceedances of limit values over

10Note, however, that each member state is responsible for implementing adequate measures in case of

exceeding.

11Source: EEA, Air quality measures (data �ow K).

12For example, the hourly limit value for NO2 is 200µg/m3 not to be exceeded more than 18 times a year

(see Table A2 in Appendix). In 2010, six stations in the Madrid region in Spain exceeded the limit. The

average number of times of exceedances for this region and year is 42.88, so that our RegAQ variable in this

case is equal to 1.38 (= (42.88− 18)/18).
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allowed values by country and year for NO2 and PM10. It shows that over our period of

time (1999-2015), several countries, including both old and more recent EU countries, have at

least one exceedance above the limit value and therefore should have implemented additional

environmental measures in at least one region to comply with the regulation. The number of

exceedances over the allowance also decreases over time for the two pollutants.

Using exceedance of limit values as a proxy for environmental regulation has several advan-

tages. It allows us to tackle two major problems, i.e., simultaneity and multidimensionality,

that have been widely documented in the literature (e.g., Levinson and Taylor, 2008). First,

the ambient air quality limits we consider are equally and uniformly imposed on all EU

countries and are based on considerations related to the protection of human health. Thus,

all member states face the same limit values, which are exogenous to their own economic

activity or preferences (lobbying from citizens or industrial sectors). Second, environmental

regulation is multidimensional, and regional or national authorities use many di�erent instru-

ments to achieve their objectives (Brunel and Levinson, 2013). Here, we do not focus on one

particular measure, such as the lead content of gasoline or ecotaxation. Indeed, within the

AAQD framework, regions have high �exibility in implementing adequate measures to reduce

emissions below the limits imposed by the directives. On the downside, our proxy for envi-

ronmental regulation does not allow us to compare the e�ects of di�erent policy instruments

on clean innovations (see, e.g., Veugelers, 2012).

Furthermore, the AAQD is relatively e�ective, and most regions and countries implement

environmental measures in the case of exceedances. Finally, the AAQD is the most con-

straining legislation compared to other EU directives. The other major legislation dealing

with air quality, the National Emission Ceilings Directive (NECD) adopted in 2001 sets emis-

sion ceilings speci�c to each member state for four pollutants (SO2, NOx, COV and NH3)

that have to be met by 2010.13 For the two pollutants that we consider here, only NOx

appears in both directives. Moreover, most countries met their national emission ceilings for

NOx during the 2010-2015 period. In robustness checks, we control for potential measures

13The revision of the NECD in 2016 adds a �fth pollutant (PM2.5) and sets new emission reduction

commitments for 2020 and 2030.
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unrelated to AAQD but related to NECD (see Section 3.2). Note that there are also speci�c

emission standards coming from other directives (such as the Industrial Emissions Directive

or the Medium Combustion Plant Directive), but they are source- or product-related and

generally support the targets of the AAQD and NECD.

2.3 Patent data

Patent data have been used extensively as a measure of technological innovation. This mea-

sure has both pros and cons compared to alternative measures, such as R&D expenditures or

R&D personnel (e.g., OECD, 2009; Dechezleprêtre et al., 2011). On the one hand, as a way of

protecting inventions, patents are a natural measure of the output of the innovation process

(Griliches, 1990). Moreover, they provide detailed information on the nature of the inven-

tion, its technological content, the inventors involved, including their geographical locations

at the time of invention, and other useful indicators. On the other hand, patents capture only

one way for �rms, institutions or individuals to protect inventions. Patent values are also

quite heterogeneous: some patents generate high economic rents while others might remain

unexploited in the marketplace.

Following the recent literature, we proxy innovative change in a given technology class by the

number of patents applied in that very class. For the purpose of our empirical strategy, we

use patent data information at the EU NUTS-2 level broken down by technology class. These

data come from the European Patent O�ce (EPO) Worldwide Patent Statistical Database

(PATSTAT).14 Patents were classi�ed using the Cooperative Patent Classi�cation (CPC)

scheme. We use annual counts of patent applications to the EPO (whether granted or not)

at the 4-digit technology class level based on the date of priority. We follow the literature

and consider only EPO patents (and not patents exclusively �led with national patent of-

�ces) to ensure that the patents that we consider are of high quality (see, e.g., Calel and

14Similar data have been used, for example, by Kogler et al. (2017) to measure knowledge produced within

each NUTS-2 region and thus map the knowledge space of the EU15 countries between 1981 and 2005.
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Dechezleprêtre, 2016).15

We use information on the region of residence of the inventor(s) to capture the geographi-

cal distribution of patents. To avoid double counting, we follow common practice and use

fractional counting. If a patent was developed by several inventors located in various EU

NUTS-2 regions at the time of the invention, we equally divide the patent among all regions.

In the �nal sample, we have patents in 654 CPC classes (4-digit level) for 273 regions in 28

EU countries over the 1999-2015 period.

To measure the direction of technological change and identify innovations that should foster

climate change mitigation, we rely on the recently developed classes pertaining to �technolo-

gies or applications for mitigation or adaptation against climate change� (Veefkind et al.,

2012). This new tagging scheme - encompassing the Y02 and Y04S classes - has been de-

veloped by means of search strategies by expert examiners and formalised into algorithms.

Thus, it consistently applies to patents �led during our period of investigation (and before).

The Y02 category now includes eight di�erent subclasses and allows for a detailed analysis of

the environmental measures that impact di�erent types of Climate Change Mitigation Tech-

nologies (CCMTs). The eight subclasses are de�ned as follows: Y02A (Adaptation to climate

change), Y02B (Buildings), Y02C (Capture and storage of greenhouse gases), Y02D (ICT

aiming at the reduction of own energy use), Y02E (Production, distribution and transport

of energy), Y02P (Production and processing of goods), Y02T (Transportation) and Y02W

(Waste and wastewater) (see Table A4 in Appendix). The class Y04S relates to smart grids.

In our empirical analysis, we have all the subclasses except Y02A and Y02D, which are too

recent for our current dataset. Among the existing categorisations, the Y02/Y04S tagging

scheme is the most comprehensive and accurate, and has been used in several recent papers

focusing on clean innovations (e.g., Calel and Dechezleprêtre, 2016).16

15As argued by Calel and Dechezleprêtre (2016), only high-value inventions typically get patented at the

EPO.

16The OECD proposes an alternative measure of environment-related technology classes (ENV-tech) based

on the identi�cation of relevant CPC patent classes (see Ha²£i£ and Migotto, 2015). However, this classi-

�cation identi�es classes and not patents, and these classes are compiled at di�erent levels of aggregation.
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Unlike other CPC classes, the Y02/Y04S scheme has been de�ned as a purely complementary

tagging scheme (Veefkind, 2012). In that sense, it comes at the top of the existing CPC

classi�cation and does not replace any previously reported CPC class. Patents tagged with

one of the green classes should thus, by construction, also be assigned to other regular (non-

green) CPC classes. To consistently disentangle green patents from non-green patents, we

adopt two strategies. First, any patent tagged with a green class is not reported in any

other CPC class. Second, we account for the complementarity between green and non-

green classes by introducing an additional dummy variable (Compc in equation 1) capturing

whether a given non-green class is complementary to each Y02/Y04S class using probabilistic

cooccurrences between technology classes (see the Appendix for details). Not considering this

complentarity between CPC classes could bias our coe�cients downward, and the extent of

the bias could be di�erent across the Y02/Y04S classes.

To illustrate this, let us consider the example of a �rm that develops and patents innovations

related to CO2 capture in the face of new air pollution regulations. Technologies and innova-

tions this �rm would develop should thus be related to the Y02C class but also to the B01D

class which, in short, relates to innovations in �separation of gases�. Accordingly, everything

else held constant, the increase in environmental regulation would increase patents in both

the Y02C and B01D classes. In our original patent database, approximately 90% of patents

tagged with the Y02C class also appear in the class B01D (2903 out of 3330 cases). This

connection should blur the estimated e�ect of the environmental regulation between green

and non-green classes.17

Green innovations are expanding over time in the EU. The subclass Energy (clean energy)

now represents the largest class in the number of patents, followed by green patents in trans-

Moreover, the OECD classi�cation relies extensively on the Y02 tagging scheme, and most of the other CPC

classes are accounted for, at least partly, in our Compc category.

17Put di�erently, this is equivalent to say that due to the interference among groups (among green and non-

green classes), the response (change in patents) of an observation is related to the treatment (environmental

regulation) received by other observations. Thus, this interference biases the comparison of the between-group

response under treatment and no treatment.
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portation (Transport) and in the production and processing of goods (Prod) (Figure 1).

Figure 1: Evolution of the number of green patents over the period 1999-2011
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Source: PATSTAT. The number of green (CCMT) patents is computed using fractional counting (see text
for details). A same patent can be tagged in several green CPC classes.

The share of green patents in the total number of patents varies signi�cantly across EU

countries. Nordic countries, such as Denmark specialising in wind energy, and some Southern

or Eastern European countries, such as Greece or Romania specialising in solar energy, have

a larger than average share (see Figure A2 and Table A5 in Appendix). The map displayed

below (Figure 2) shows that there is also substantial heterogeneity among EU regions. Most

Eastern European regions do not report any patents in green technologies or have a count of

weighted patents lower than 50.18 Nordic regions, in particular Danish regions and Northern

Germany, show the highest share of green patents (higher than 5%).

18In the �gure, we set at zero this share for regions that have a count of weighted patents fewer than 50

because in that case, a small number of green patents could tremendously increase the share of green patents

in the total number of patents.
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Figure 2: Average share of green patents (CCMTs) in the total number of patents by EU
region in 2012

Source: PATSTAT. The number of patents is computed using fractional counting (see text for details). The
zero category includes both regions that do not report any patent in CCMTs and regions that have a count
of weighted patents lower than 50.
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3 Results

We present our baseline results, followed by some robustness checks and additional �ndings

from the dynamic and spatial analysis.

3.1 Baseline results

We estimate our baseline equation (eq. 1) on the overall sample, made up of 273 regions,

654 technology classes and 17 years (1999-2015). Estimation results are displayed in Table 1.

The interaction between the dummy variable (RegAQrt) and a dummy variable identifying

green patents (Greenc) captures the e�ect of measures implemented to comply with the

environmental regulation on the specialisation of regions in green innovations. In columns (1)

and (2), we report the results for PM10 exceedances, and in columns (3) and (4), we report

the results for NO2 exceedances.19

We �nd that regions implementing environmental measures to comply with the AAQD tend

to innovate more in green technologies (columns 1 and 3 of Table 1).20 The stock of patents

has the expected positive e�ect and is signi�cant at the 1% level in all cases.21

In columns (2) and (4), we disaggregate green patents into di�erent subclasses. Technologi-

cal change triggered by environmental measures is directed more speci�cally towards energy

19In each case, the RegAQ dummy variable measures exceedances of air quality limit values for each

pollutant (PM10 concentration averaged over days or years; NO2 concentration averaged over hours or years)

and zero otherwise. Table A6 in the Appendix reports separate estimates for exceedances of PM10 day, PM10

year, NO2 hour and NO2 year limit values.

20Note that our speci�cation only allows estimating the impact of environmental regulations on green

innovations compared to non-green innovations. It does not quantify the global e�ect of environmental

regulations on innovations becaus,e in this case, the ReqAQrt variable is collinear with region-year �xed

e�ects.

21Estimation results are very similar when, instead of using an inverse hyperbolic sine (IHS) transformation

for the patent stock variable, we use a simple log and add a dummy variable to account for observations with

a lagged stock of innovations of zero (results available upon request).
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Table 1: Environmental regulation and green innovations

PM10 NO2

(1) (2) (3) (4)

RegAQrt×Greenc 0.0323* 0.0513**

(0.0183) (0.0250)

RegAQrt×GreencBuilding 0.115*** 0.0774

(0.0434) (0.0577)

RegAQrt×GreencCapture -0.0850 0.212

(0.101) (0.152)

RegAQrt×GreencEnergy 0.0792*** 0.127***

(0.0296) (0.0387)

RegAQrt×GreencProd 0.0598** 0.120***

(0.0296) (0.0453)

RegAQrt×GreencTransport 0.0251 0.0479

(0.0377) (0.0561)

RegAQrt×GreencWaste 0.0786 0.143*

(0.0556) (0.0828)

RegAQrt×GreencSmartGr 0.0262 0.159

(0.0933) (0.141)

RegAQrt×Compc 0.0979*** 0.199**

(0.0190) (0.0151)

RegAQrt×CompcBuilding 0.0131 0.0207*

(0.0125) (0.0123)

RegAQrt×CompcCapture -0.0246** -0.0285**

(0.0122) (0.0114)

RegAQrt×CompcEnergy 0.0272*** 0.0576***

(0.00922) (0.00906)

RegAQrt×CompcProd 0.0236*** 0.0269***

(0.00881) (0.00925)

RegAQrt×CompcTransport 0.00182 0.0923***

(0.0116) (0.0110)

RegAQrt×CompcWaste 0.0259** 0.0603***

(0.0103) (0.00899)

RegAQrt×CompcSmartGr 0.106*** 0.103***

(0.0123) (0.0128)

Patents Stockrct−1 0.216*** 0.215*** 0.211*** 0.210***

(0.0115) (0.0114) (0.0115) (0.0113)

Observations 1,198,944 1,198,944 1,198,944 1,198,944

Region-class FE yes yes yes yes

Region-year FE yes yes yes yes

Class-year FE yes yes yes yes

Notes: The dependent variable is the weighted count of patents per EU region, class and year.
Robust standard errors clustered at the region-year in parentheses. *** p<0.01, ** p<0.05, *
p<0.1.
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sources alternative to fossil fuels (Greenc
Energy) and green innovations in the production or

processing of goods (Greenc
Prod). These two technology classes represent approximately half

of all green patents. We also observe increasing green innovations in buildings (Greenc
Building)

for air quality measures targeting PM10 and in waste and wastewater (Greenc
Waste) for mea-

sures targeting NO2. This result is consistent with pollutant-speci�c sources: the construc-

tion of buildings and infrastructure is a substantial source of PM10 emissions, while waste

incineration and wastewater treatment cause NO2 emissions. Interestingly, we do not �nd

any e�ect of air pollution regulation on green innovations in transportation (Greenc
Transport),

which is a major contributor to air pollution and one of the largest classes of green patents

(see Figure 1 and Table A5 in Appendix). One possible reason is that innovations in this class

are driven by country-wide policies targeting the automotive industry (such as car emission

standards or tax-inclusive fuel prices, see Aghion et al. 2016).

Our estimates show that environmental measures increase patents tagged as green but also

patents that belong to complementary technological classes. The coe�cient on the variable

RegAQrt×Compc is positive and signi�cant (columns 1 and 3), and this conclusion holds

for many subclasses (classes complementary to Energy, Prod, Waste and SmartGrids)

(columns 2 and 4). Environmental measures targeting NO2 also boost innovations in classes

complementary to green technologies in transportation (Compc
Transport). While environ-

mental measures do not seem to directly a�ect green innovations in transportation (making

transportation more e�cient or less carbon-intensive, for instance), these results suggest that

they seem to a�ect related non-green technologies.

In terms of magnitude, our baseline coe�cient estimates indicate that environmental measures

targeting PM10 emissions increase green innovations by 8.2% [=exp(0.0792)-1] in energy

and by 6.2% [=exp(0.0598)-1] in the production or processing of goods in regulated regions

compared to unregulated regions (column 2). For measures targeting NO2, the e�ects are

larger, approximately 13.5% for innovations in clean energy and 12.7% for green innovations

in the production or processing of goods (column 4). This direct e�ect should also foster

a greener technological path in regulated regions. Indeed, considering the path dependence

in the innovation process, air quality regulation should increase green innovations beyond
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its contemporaneous e�ect, through an increase in the stock of green patents. Suppose a

region that implements environmental measures only in the year after entry into force of the

limit value (2005 for PM10). Then, the cumulative e�ect for clean energy innovations after

10 years is estimated to be 15.8% [= 0.082 +
∑8

k=0 0.215 ∗ 0.082 ∗ 0.8k]. For green patents

in industrial processes, the respective cumulative e�ect is approximately 12%. Suppose now

a region that implements environmental measures targeting NO2 in 2010 (the year of the

entry into force of NO2 limit values); then, the cumulative increase in innovations in clean

energy would be 25.8% after 10 years [= 0.135+
∑8

k=0 0.21 ∗ 0.135 ∗ 0.8k] and 24.2% for green

innovations in the production or processing of goods.

A back-of-the-envelope computation can provide insight into the number of extra green

patents generated by the AAQD. In our dataset, we have a total of 11,662 patents in clean

energy and 7,546 green patents in the production or processing of goods in regulated regions

(exceeding PM10 limit values) over the 2005-2015 period. Using the world without policy as

our baseline, these estimation results imply that the regulation immediately induces 1,324

[= (11, 662− 11, 662/(1 + 0.082)) + (7, 546− 7, 546/(1 + 0.062))] new patents in clean energy

and industrial processes in regulated regions compared to non-regulated regions and 2,400

[= (11, 662 − 11, 662/(1 + 0.158)) + (7, 546 − 7, 546/(1 + 0.12))] new green patents after 10

years. NO2-related measures should generate 1,979 new green patents as a direct e�ect and

up to 3,416 over 10 years.22

3.2 Robustness analysis

To test the robustness of our results with respect to the environmental regulation variable,

we estimate our model on several subsamples. We �rst exclude regions that never exceeded

over the whole time span (1999-2015). These regions are used in the control group in our

baseline estimations but we might think that they are intrinsically di�erent from regions that

221, 979 = (10, 896−10, 896/(1+0.135))+(6, 062−6, 062/(1+0.127)) and 3, 416 = (10, 896−10, 896/(1+

0.258)) + (6, 062− 6, 062/(1 + 0.242)), given that the total number of green patents in regulated regions over

the 2010-2015 period is 10,896 in clean energy and 6,062 in industrial processes.
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exceeded at least once. In our original sample, we have 273 regions. Among these, 80 regions

from 15 countries never exceeded PM10 limit values. These regions are located mainly in the

UK for 45% and in France for 11%. When excluding regions that did not have to implement

any PM10-related environmental measures to comply with the AAQD because they never

exceeded limit values, our estimates provide a sort of `treatment e�ect among the treated'.

The results are displayed in column (1) of Table 2. They are close to the baseline estimates

(column 2 of Table 1). Similarly, we exclude regions that never exceeded NO2 limit values

(114 regions located in 25 EU countries) in column (2) and obtain similar results.

We further investigate the robustness of our results with respect to the RegAQ variable.

Regulations other than the AAQD at the EU, national or subnational levels are controlled

for in the estimation with region-year �xed e�ects. However, if these other regulations are

correlated with AAQD exceedances (our measure of the regulation), then our coe�cient of

interest might be biased. There is no obvious reason why this should happen in the case of

a regulation that has nothing to do with the Air Quality Directive. However, we still want

to check the robustness of our results controlling for the other major regulations against

pollution, the NECD (see section 2.2). More precisely, we estimate our model on regions

of countries that never exceeded their national emission ceilings for NOx over the post-2010

period, when the NECD entered into force.23 This represents 10 countries (out of 28) that

should not have implemented any further actions or programmes to reach NECD targets.

Estimation results on this subsample (column 3 of Table 2) yield similar conclusions.

We also check the robustness of our results with respect to infringement cases. As stated

before, the AAQD is a relatively e�ective regulation and most countries and regions im-

plement environmental measures in case of exceedances. However, one can still argue that

some member states fail to comply because the regulation is not implemented forcefully in

all regions. Indeed, the European Commission (EC) currently pursues infringement proceed-

ings at various stages on NO2 and PM10 against several member states and referred eight

23The NECD also concerns three other pollutants that we do not consider here, i.e. non-methane volatile

organic compounds (NMVOCs), sulphur dioxide (SO2), ammonia (NH3) and, after 2016, �ne particulate

matter (PM2.5).
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countries to the European Court of Justice (ECJ) (second to last stage of the procedure) for

systematic and continuous exceedance in several regions. This means that the EC and/or the

ECJ considers that these regions did not implement su�cient measures to reduce pollution.

Therefore, as a robustness check, we redo the estimation on subsamples excluding these 37

regions in 5 countries (Bulgaria, Poland, Hungary, Italy, Romania) that have been referred to

the ECJ for not complying with the AAQD for PM10 and 53 regions in 3 countries (France,

Germany and the United Kingdom) for NO2.24 Estimations on these subsamples reported

in columns (4) and (5) show broadly similar results. Regulated regions seem to engage in

relatively more green innovations in clean energy and in the production or processing of

goods.

Additionally, we control for the existence of potentially omitted variables. In columns (6) and

(7) of Table 2, we include as additional control variables the annual mean concentration of

pollution in PM10 and NO2 per region and year interacted with the dummy variables identi-

fying green patents.25 This allows us to test whether our variable measuring exceedances of

limit values is a good proxy for changes in environmental regulation and does not capture only

the level of pollutant concentration. As in our baseline results, we still �nd that our inter-

action variable for environmental regulation remains positive and signi�cant for clean energy

(Greenc
Energy) and green technologies in the production or processing of goods (Greenc

Prod).

Then, we test the robustness of our results with respect to extreme cases: regions that

always exceed air quality limit values or regions with very high pollution levels. In Appendix

Table A7, we reestimate our model, �rst, on the sample excluding regions that always exceed

over the sample period (1999-2015).26 Then, we exclude the 10% most polluting regions in

our sample (26 regions) for PM10 and for NO2 concentration levels. In all cases, our main

24To identify these regions, we use information from the O�cial Journal of the European Union and create

a spatial concordance between air quality zones and NUTS-2 regions.

25Note that, in this speci�cation, the level of pollutants concentration is captured by region-year �xed

e�ects. For this reason, we only add the interaction between this variable and dummies for green technologies.

26This represents 40 regions for PM10 located mainly in Poland (30%), Italy (17%) and in the Czech

Republic (15%) and 77 regions for NO2 mainly in Germany (38%).
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conclusions remain.

Finally, we use an alternative variable that measures the stringency (intensity) of environ-

mental measures: the average exceedance level above the limit value (average number of days

or times of exceedance by region and year) over the allowed level. The estimation results, re-

ported in Table A8 in the Appendix, provide similar conclusions. We �nd that environmental

measures foster green innovations mostly in clean energy and in industrial processes.27

3.3 Placebo

We further implement a set of placebo tests to investigate the validity and robustness of

our research design. The AAQD implies a discontinuity in the treatment: a region should

be `treated' (i.e., implement additional environmental measures) when it exceeds prede�ned

yearly thresholds of pollution concentration (see section 2.2 and Table A2 in the Appendix).

For each pollutant, we de�ne placebo threshold values of pollution concentrations that are

close but lower than o�cial levels as de�ned by the AAQD. We construct region-year dummies

for `placebo-treated' regions (placebo limit values are given in Appendix Table A3). As

these regions do not fall within the scope of the AAQD, they should not depict increased

specialisation in green technologies.

We �rst ran our placebo analysis on our baseline sample of regions. These results are reported

in columns (1) and (2) for PM10, and (5) and (6) for NO2 in Table 3. As anticipated,

the estimated placebo treatment e�ect is small or negative in magnitude and statistically

indistinguishable from zero. Regions that fall within the placebo treatment have slightly

negative green specialisation on average (columns 1 and 5), but corresponding coe�cients

are not statistically signi�cant.

To test how the placebo-treated regions behave in comparison to other nontreated nor

placebo-treated regions, we exclude region-years that exceed limit values as de�ned by the

27Note that estimation results point to some negative e�ects of additional measures against PM10 emissions

on green innovations in carbon capture (Greenc
Capture) and smart grids (Greenc

SmartGr), but these should

be considered with caution because the number of patents in these categories is much smaller.
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AAQD regulation for PM10 (columns 3 and 4) and NO2 (columns 7 and 8). If our model

is well speci�ed, we should �nd no e�ect of the placebo compared to those regions having

lower levels of pollution concentration. As anticipated, the estimated placebo e�ects are not

signi�cantly di�erent from zero at conventional levels. These results combined with those

from Table A7 suggest that the estimated increase in green innovations in Table 1 does not

arise from gross misspeci�cation in our research design. We observe a positive e�ect on

green innovation specialisation only when a region exceeds those pollution concentration lev-

els that necessitate implementing further environmental measures. This also provides further

evidence endorsing that AAQD air pollution exceedances actually translate into additional

measures.

3.4 Dynamic analysis

In our analysis, we �nd direct and contemporaneous impacts of air quality exceedances on

green innovations. However, local or national authorities might also implement mid- or

long-term measures, or might implement measures only some time after the exceedances of

air quality limit values. Innovations might also react with delays or by anticipation. For

these reasons, in this section, we further analyse the timing of green innovation response

to environmental measures faced by regions under the AAQD. To test for the impact of

exceedances over time, we estimate our model introducing one- to three-year lags and leads for

the exceedance variable (interacted with the Green dummy variables as before).28 Estimation

results are presented graphically in Figure 3. For clarity, we report only the key estimated

coe�cients on the lags and leads for the two patent subclasses of interest (green innovations

in clean energy and in industrial processes).

Our results suggest both contemporaneous and lagged e�ects on green innovations. There

is a signi�cant response of green patenting specialisation sustained up to three years after

the environmental policy shock. We observe no positive response prior to the shock, none of

28In these estimations, the stock of patents is lagged four years to stay consistent with our underlying

model.
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the preshock coe�cients are signi�cantly di�erent from zero. Thus, there do not seem to be

any anticipation e�ects, further suggesting that the AAQD generates an exogeneous shock

to local environmental measures. Consistent with our baseline results, the impact of NO2-

related measures is stronger and longer lasting than that of PM10. Overall, green innovations

are more a�ected in the year of exceedances and in the year after, but there are also signi�cant

e�ects two to three years after the exceedances (PM10 exceedances for innovations in clean

energy and NO2 exceedances for green innovations in the production or processing of goods).

Note that the dynamic e�ects of the regulation seem to be less clear-cut for innovations in

industrial processes, both for PM10 and NO2 (bottom graphs).29

3.5 Spatial analysis

In this subsection, we undertake some spatial analyses. Local green innovations might re-

spond to broader incentives, as environmental measures implemented in one region could

induce more green patents in other (close) regions. This could occur in particular if the e�ect

of the regulation on innovation is indirect, driven by an increase in the demand for green tech-

nologies. Conversely, innovators might engage in more green innovations in regulated regions

but less so in neighbouring unregulated regions due to potential substitution or spatial leak-

age e�ects. To further investigate the geographical pattern of innovations and discriminate

between these two possible e�ects, we introduce regional spatial dynamics with an additional

variable evaluating the extent to which neighbouring regions have to implement further envi-

ronmental measures under the AAQD. More precisely, we construct for each region a variable

capturing the distance-weighted regulation of other regions (q) in the country:

RegAQ−rt =

∑
q 6=r RegAQqt × (1/Distqr)∑

q 6=r(1/Distqr)

29The lagged e�ects of PM10-related measures are marginally signi�cant and the lagged e�ects of NO2-

related measures seem to re�ect an increasing trend. However, estimates of the lagged variables are generally

less precise, and we cannot investigate longer lags of the innovation response to the AAQD, in particular

for NO2-related measures because NO2 limit values entered into force in 2010 and the period of our dataset

ended in 2015.
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Figure 3: The dynamic e�ect of the regulation on innovations in clean energy
(RegAQ×GreenEnergy) and industrial processes (RegAQ×GreenProd)
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Source: Own estimation results (see text for details). The vertical bars refer to the 95% con�dence interval.
The horizontal axis represents the number of years before and after exceedances of air quality limit values
(PM10 or NO2).
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The corresponding variable takes values between 0 and 1. It is 0 when no other regions

of the country need to implement environmental measures due to exceedances of the limit

values in a given year. It is 1 when all other regions of the country need to implement

further measures. Its value is closer to 1 when close regions exceed compared to more distant

regions. By adding this variable in equation (1) (interacted with the Green dummy variables

as before), we measure the specialisation in green innovations of each innovative region when

other regions in the country implement additional environmental measures.

Table 4: Environmental regulation and green innovations - Spatial anaysis

PM10 NO2

Region reg Rest of cty reg Region reg Rest of cty reg

(RegAQrt) (RegAQ−rt) (RegAQrt) (RegAQ−rt)
(1) (2) (3) (4)

RegAQrt or RegAQ−rt
×GreencBuilding 0.0642 0.281*** 0.0805 -0.0681

(0.0469) (0.0992) (0.0659) (0.0960)

×GreencCapture -0.126 0.261 0.0559 0.519**

(0.104) (0.265) (0.163) (0.235)

×GreencEnergy 0.0863*** -0.201*** 0.107** 0.0396

(0.0305) (0.0754) (0.0455) (0.0699)

×GreencProd 0.0672** -0.158** 0.0981* 0.0226

(0.0325) (0.0793) (0.0547) (0.0814)

×GreencTransport 0.0257 -0.192* 0.0474 -0.125

(0.0392) (0.105) (0.0631) (0.0998)

×GreencWaste 0.0684 0.0302 0.126 -0.0154

(0.0612) (0.136) (0.0858) (0.124)

×GreencSmartGr 0.0768 -0.729** 0.119 0.0526

(0.0946) (0.305) (0.148) (0.229)

Patents Stockrct−1 0.216*** 0.211***

(0.0114) (0.0113)

Observations 1,193,909 1,193,909

Control RegAQrt×Compc yes yes

Control RegAQ−rt×Compc yes yes

Region-class (rc) FE yes yes

Class-year (c1t) FE yes yes

Region-year (rt) FE yes yes

Notes: The dependent variable is the weighted count of patents per EU region, class and year. Robust
standard errors clustered at the region-year in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All re-
gressions include interaction terms between the RegAQrt (or RegAQ−rt) variable and a dummy Compc
capturing whether a non-green technology class is complementary to each green class, as de�ned by the
Y02/Y04S tagging scheme (unreported).
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Estimation results are displayed in Table 4. The positive e�ect of the regulation on green

innovations in clean energy (Greenc
Energy) and in the production or processing of goods

(Greenc
Prod) are mainly local (columns 1 and 3). Environmental measures in other regions

have either no impact on specialisation in green innovations (column 4) or a negative one

(column 2). This last result might suggest substitution e�ects. Some environmental mea-

sures might trigger local green innovations but at the same time reduce green innovations in

proximate regions (as compared to non-green innovations). Note that we obtain very similar

results when the variable for the regulation in other regions (RegAQ−rt) is not weighted by

distance (see Table A9 in the Appendix).

These �ndings suggest that estimating our equation at the country level can blur the identi-

�cation of the AAQD e�ect by `hiding' speci�c e�ects occurring at the regional level if there

are substitution e�ects between innovating regions. On the other hand, even if most environ-

mental measures to comply with the Air Quality Directive are de�ned at the local or regional

levels, some of them are implemented on a national basis. More speci�cally, it is countries,

and not regions, that are accountable to the European Commission for e�ectively transposing

and implementing this directive nationally.30 Therefore, the full constraint imposed by the

regulation could be perceived at the country level.

In Table A10 in the Appendix, we redo our baseline estimation at the country level. The

estimation results are generally consistent with the preceding analysis. At the country level,

we �nd no e�ect of measures against PM10 on green innovations (column 1) or on green

innovations in clean energy or in industrial processes (column 2). This could be because

positive e�ects on the regulated regions are counteracted by negative e�ects in close regions

of the same country (see columns 1 and 2 in Table 4). On the other hand, environmental

measures targeting NO2 still induce more green innovations in clean energy at the country

level because in that case, we do not see any substitution e�ect with other regions (see

columns 3 and 4 in Table 4).31

30For example, when the European Commission considers that the regulation is not enforced, it launches

legal proceedings against countries.

31Note that the estimated e�ect of environmental measures on non-green but related technologies (Compc)
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Finally, we introduce as an additional control variable the stock of patents for a given tech-

nology class in other regions of the same country weighted by geographic distance. The

results are displayed in Table A11 in the Appendix. Local specialisation in speci�c technolo-

gies also depends upon the stock of patents in other regions. The coe�cients of local and

rest-of-the-country stocks of patents are consistent with the one displayed in the country-level

analysis (Table A10 in the Appendix). Moreover, we still �nd a positive e�ect of environmen-

tal measures on regional specialisation in green innovations in clean energy and in industrial

processes.32

4 Endogeneity

To identify a causal e�ect, our empirical strategy focuses on the interaction between a tech-

nology feature (green vs. non-green) and an exogenous policy feature at the region level

(additional environmental measures in the region-year due to the exceedance of a pollution

threshold). This allows controlling for a large set of �xed e�ects � at the region-technology

class, region-year and technology class-year levels � producing an identi�cation strategy that

follows the same rationale as a quasi di�erence-in-di�erence setting. However, to be inter-

preted as causal, the interaction with our main policy variable (RegAQ) should not su�er

from an endogeneity bias and thus needs to ful�l a set of assumptions.

There are two main suspects as a source of endogeneity in our baseline estimates. First,

regions with �greener� activity (and greener innovations) could also be less likely to exceed

pollution thresholds requiring the implementation of further environmental regulations. This

source of reverse causality should bias our estimates downward.33 The second concern is the

are very similar at the regional and country levels because environmental measures do not induce substitution

e�ects in other regions for these technologies.

32When we assess the impact of environmental measures in proximate regions, controlling for the stock of

patents in these other regions, we do �nd very similar results (see Table A12 in the Appendix compared to

Table 4).

33Note that our robustness analysis (subsection 3.2), by excluding from the sample regions that have
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latitude granted to countries and regions in choosing measures to be implemented in case

of exceedance. A potential source of omitted-variable bias could arise from polluting sector

lobbying if economic sectors generating relatively more non-green innovations are also those

responsible for higher pollution. Lobbying from key local sectors could push local authorities

to not implement the most coercive measures incumbent upon the most polluting sectors.

In both cases, the sources of potential endogeneity go against our testing assumption and

should bias our results downward. We further investigate whether our previous results un-

derestimate the impact of environmental regulation on specialisation in green innovations.

To tackle the endogeneity issue and test for the direction of its bias, we use an exogenous

instrument. We follow Broner et al. (2012) and Bagayev and Lochard (2017) and instrument

the exceedance of air pollutant concentration levels by a measure of the speed at which

pollutants disperse in the air due to meteorological conditions. More speci�cally, we compute

ventilation coe�cients that multiply wind speed and the depth of the atmospheric layer. This

type of ventilation coe�cient is commonly used in meteorological forecasts to predict the levels

and concentration of air pollution in a region. ERA-Interim data from the European Centre

for Medium-Term Weather Forecasting (ECMWF) make available wind and mixing layer

information in the very short term (daily basis) and at a very local level (areas representing

less than 10 square kilometres, on average). Using geographic coordinates of the stations that

serve to monitor air pollution concentration levels under the AAQD, we thus compute the

minimum monthly average ventilation coe�cient faced by any monitoring station at a region-

year level. As previously shown in Bagayev and Lochard (2017), the ventilation coe�cient is

a good predictor of exceedance of air pollutant concentration and is very plausibly exogenous

to local economic factors.

never exceeded air quality limits during our time frame (columns 1 and 2 in Table 2), sheds some light on

this issue. The larger estimates in columns (1) and (2) are consistent with the idea that regions that have

no pollutant exceedances tend to have greener innovation specialisation, which can be a source of reverse

causality. However, this endogeneity bias could be more important than suggested by the robustness check

in Table 2 due to the within-region yearly variations in green innovation that can, in turn, in�uence the

probability of exceeding pollutant concentration levels.
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The estimation of our econometric speci�cation through the instrumental variables method is

complicated because the second-stage speci�cation is non-linear and includes high dimensional

�xed e�ects (more than 90,000 �xed e�ects). Thus, we need to rely on an alternative strategy

and adopt a two-stage residual inclusion (2SRI) control function approach (Wooldridge, 2015).

The results from the control function approach are reported in Table 5. It should be noted

that there are some notable di�erences in the estimations of Table 5 compared to our baseline

estimations. First, our �rst-stage estimations cannot include both region-year and region-

class �xed e�ects due to multicollinearity.34 Accordingly, we do not use region-class �xed

e�ects but instead rely on country-class �xed e�ects. Second, the sample size is somehow

smaller than our main estimations due to missing geographic coordinates of some monitoring

stations. Therefore, as a matter of comparison, we include estimates of our baseline equation

using the same restricted sample (columns 1 and 3).35 Finally, note as well that our control

function approach does not allow disaggregating the Green class into several subclasses be-

cause we only have one instrument. For the same reason, we cannot control for the interaction

of the environmental regulation variable with the dummy for classes complementary to green

technologies (RegAQ×Comp).

The coe�cients of our main variable of interest in columns (1) and (3) are very similar to

our baseline estimates reported in Table 1 (columns 1 and 3).36 The stock of patents depicts

a larger coe�cient due to the use of country-class �xed e�ects (instead of region-class �xed

e�ects). This variable now captures the initial cross-technology class di�erences between re-

gions that were previously captured by the region-class �xed e�ects. The control function

34The �rst-stage dependent variable is dichotomous (the interaction between RegAQrt and Greenc).

35The estimation routine drops singletons to improve the convergence of the maximum likelihood coef-

�cients. Indeed, in the �rst stage, when residuals to be included in the second stage are calculated, the

routine drops region-year observations for which the dependent variable is always zero. This results in a

slight decrease in the number of observations between columns (1) and (3) and columns (2) and (4).

36Contrary to Table 1, estimations of columns (1) and (3) of Table 5 do not include RegAQ×Comp.

Doing so provides very similar but slightly larger coe�cients. We do not report these estimations, but they

are available upon request.
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estimates are presented in columns (2) and (4), with the �rst-stage estimates provided at the

bottom of Table 5. First, it can be noted that the ventilation coe�cient has a negative and

highly signi�cant e�ect on the exceedance of both PM10 and NO2 limit values. As expected,

higher ventilation in a region decreases the probability of exceeding pollutant concentration

levels, which seems to support the use of this instrument in our speci�cation. The residu-

als from the �rst-stage estimations of the RegAQ×Green variable are then included in our

baseline estimates. These residuals should capture all the endogenous components of our

variable of interest and leave out only the exogenous component predicted by the instru-

ment. When included in the second stage, residuals depict highly negative and signi�cant

coe�cients, suggesting a downward bias in our previous estimations. Indeed, the e�ect of

environmental stringency on specialisation in green innovations is much larger using the con-

trol function. Supporting our main �nding, these results also indicate that our previously

reported impact of environmental regulation on specialisation in green innovations is likely

to be underestimated.
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Table 5: Environmental regulation and green innovations - Control function

PM10 NO2

Poisson 2SRI Poisson 2SRI

(1) (2) (3) (4)

RegAQrt×Greenc 0.0331** 0.476*** 0.0502** 0.644***

(0.0167) (0.155) (0.0248) (0.198)

lnPatents Stockrct−1 0.822*** 0.822*** 0.822*** 0.822***

(0.00339) (0.00339) (0.00339) (0.00339)

Control Function Residuals:

RegAQrt×Greenc (residual) -0.450*** -0.600***

(0.158) (0.200)

1st Stage

Dep. var: RegAQrt×Greenc
V entilation Coeff rt×Greenc -0.0880*** -0.0686***

(0.0177) (0.0133)

Observations 1,175,107 1,175,058 1,175,107 1,175,058

Country-class FE yes yes yes yes

Region-year FE yes yes yes yes

Class-year FE yes yes yes yes

Notes: The dependent variable is the weighted count of patents per EU region, class and year. Ro-
bust standard errors clustered at the region-year in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
The control function approach is applied to the estimations reported in columns (2) & (4). The ex-
ogenous instrument used in the �rst stage is the log of the minimum monthly ventilation coe�cient
(interacted with the dummy Greenc). The �rst stage dependent variable is respectively the RegAQ
dummy (interacted with the dummy Greenc) when a region exceeds the limit values for PM10 con-
centration (column 2) and NO2 concentration (column 4). See text for details.
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5 Final remarks

Local air pollution regulations can both protect human health, as well as mitigate global

climate change. However, the e�ectiveness of these regulations to counter climate change is

subject to their impact on redirecting technological change towards green technologies.

Our analysis shows a positive and signi�cant e�ect of environmental measures on speciali-

sation in green innovations in general. We also �nd some di�erential impacts depending on

the class of green innovations, with a strong and positive e�ect for green innovations in clean

energy, in the production or processing of goods and, to a lesser extent, in buildings and in

waste and wastewater. We do not �nd consistent results supporting a positive e�ect of the

regulation on green innovations in transportation.

We bring important policy implications through our analysis. Our �ndings show that envi-

ronmental regulation fosters technological change towards climate change mitigation. This

is all the more important since the e�ectiveness of environmental regulations to generate

green innovations is central to anticipating the cost of mitigating climate change. It also

brings further evidence of the trade-o� between the environmental and economic bene�ts of

environmental measures. In particular, policy measures to �ght air pollution, which has both

sizeable economic and human health impacts, have a generally positive e�ect on innovations

that aim at slowing down climate change and its consequences.

In our analysis, we are able to evaluate the overall impact of additional environmental mea-

sures implemented to comply with European regulations. However, our environmental reg-

ulation variable does not allow us to compare the e�ects of di�erent policy instruments on

green innovations. Moreover, the CCMT tagging scheme does not identify the degree to

which technologies are `environmentally friendly'. Finally, our analysis mainly focuses on the

demand side and does not comprehensively investigate the process of generating innovations,

in particular the cost of innovation in di�erent technology �elds.

35



References

Acemoglu, D. (2002). Directed technical change. Review of Economic Studies, 69, 781�809.

Acemoglu, D. and A. Finkelstein (2008). Input and Technology Choices in Regulated Indus-

tries: Evidence from the Health Care Sector. Journal of Political Economy, 116(5), 837-880.

Acemoglu, D., P. Aghion, L. Bursztyn and D. Hémous (2012). The Environment and Directed

Technical Change. American Economic Review, 102(1) 131-66.

Acemoglu, D., U. Akcigit, D. Hanley and W. Kerr (2016). Transition to Clean Technology.

Journal of Political Economy, 124(1), 52-104.

Aghion, P., A. Dechezleprêtre, D. Hémous, R. Martin and J. Van Reenen (2016). Carbon

Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry.

Journal of Political Economy, 124(1), 1-51.

Anderson, M.L. (2020). As the Wind Blows: The E�ects of Long-term Exposure to Air

Pollution on Mortality. Journal of the European Economic Association, 18(4), 1886�1927.

Audretsch, D. B., and M. P. Feldman (2004). Knowledge Spillovers and the Geography of

Innovation. In J. V. Henderson and J.F. Thisse (eds), Handbook of Regional and Urban

Economics, Vol. 4, Amsterdam: Elsevier.

Bagayev, I. and J. Lochard (2017). EU air pollution regulation: A breath of fresh air for East-

ern European polluting industries? Journal of Environmental Economics and Management,

83, 145-163.

Bento, A., M. Freedman and C. Lang (2015). Who Bene�ts from Environmental Regulation?

Evidence from the Clean Air Act Amendments. The Review of Economics and Statistics,

97(3), 610�622.

Broner, F., P. Bustos and V. M. Carvalho (2012). Sources of Comparative Advantage in

Polluting Industries, NBER Working Papers 18337, National Bureau of Economic Research.

36



Brunel, C. and A. Levinson (2013). Measuring Environmental Regulatory Stringency. OECD

Trade and Environment Working Papers 2013/5, OECD Publishing.

Brunnermeier, S. and M. Cohen (2003). Determinants of environmental innovation in US

manufacturing industries. Journal of Environmental Economics and Management, 45, 278-

293.

Calel, R. and Dechezleprêtre, A. (2016). Environmental Policy and Directed Technologi-

cal Change: Evidence from the European carbon market, The Review of Economics and

Statistics, 96(1), 173-191.

Currie, J. and R. Walker (2019). What Do Economists Have to Say about the Clean Air

Act 50 Years after the Establishment of the Environmental Protection Agency? Journal of

Economic Perspectives, 33(4), 3-26.

Dechezleprêtre, A., Glachant, M., Ha²£i£, I., Johnstone, N. and Y. Ménière (2011). Invention

and Transfer of Climate Change�Mitigation Technologies: A Global Analysis. Review of

Environmental Economics and Policy, 5(1), 109-130.

European Environment Agency, EEA (2016), Air Quality in Europe � 2016 Report, Luxem-

bourg: Publications O�ce of the European Union.

European Environment Agency, EEA (2018), Air quality in Europe - 2018 report, Luxem-

bourg: Publications O�ce of the European Union.

Gibson, M. (2019). Regulation-induced pollution substitution. The Review of Economics

and Statistics, 101(5), 827-840.

Greenstone, M. (2002). The Impacts of Environmental Regulations on Industrial Activity:

Evidence from the 1970 and 1977 Clean Air Act Amendments and the Census of Manufac-

tures. Journal of Political Economy, 110(6), 1175-1219.

Greenstone, M. and R. Hanna (2014). Environmental Regulations, Air and Water Pollution,

and Infant Mortality in India. American Economic Review, 104(10), 3038-3072.

37



Griliches, Z. (1990). Patent statistics as economic indicators: A survey. Journal of Economic

Literature, 28 (4), 1661-1707.

Guimaraes, P. and P. Portugal (2010). A simple feasible procedure to �t models with high-

dimensional �xed e�ects. The Stata Journal, 10(4), 628-649.

Ha²£i£, I. and M. Migotto (2015). Measuring environmental innovation using patent data.

OECD Working Paper 89.

Hanna, R. (2010). US Environmental Regulation and FDI: Evidence from a Panel of US-

Based Multinational Firms. American Economic Journal: Applied Economics, 2(3), 158-189.

Kogler, D. F., Essletzbichler, J., and Rigby, D. L. (2017). The evolution of specialization in

the EU15 knowledge space. Journal of Economic Geography, 17 (2), 345-373.

Levinson, A. and M. Taylor (2008). Unmasking the Pollution Haven E�ect. International

Economic Review, 49(1), 223-254.

Newell, R., A. Ja�e and R. Stavins (1999). The Induced Innovation Hypothesis and Energy-

Saving Technological Change. Quarterly Journal of Economics, 114(3), 941-975.

OECD, 2009. OECD Patent Statistics Manual. OECD technical report.

Popp, D. (2002). Induced Innovation and Energy Prices. American Economic Review, 92(1),

160-180.

Popp, D. (2006). International innovation and di�usion of air pollution control technolo-

gies: the e�ects of NOX and SO2 regulation in the US, Japan, and Germany. Journal of

Environmental Economics and Management, 51, 46-71.

Popp, D., R. Newell, and A. Ja�e (2010), Energy, the Environment, and Technological

Change, in Bronwyn Hall and Nathan Rosenberg, eds., Handbook of the Economics of Inno-

vation, Orlando, Academic Press/Elsevier.

UNEP, 2016. Actions on Air Quality report.

38



Veefkind, V., Hurtado-Albir, J., Angelucci, S., Karachalios, K., and Thumm, N. (2012). A

new EPO classi�cation scheme for climate change mitigation technologies. World Patent

Information, 34(2), 106-111.

Veugelers, R. (2012). Which Policy Instruments to Induce Clean Innovating?. Research

Policy (41), 1770-78.

Walker, R. (2011). Environmental Regulation and Labor Reallocation: Evidence from the

Clean Air Act. American Economic Review: Papers and Proceedings, 101(3), 442-447.

Wooldridge, J. (2015). Control Function Methods in Applied Econometrics. Journal Of

Human Resources (50), 420-445.

39


	Introduction
	Methodology and data
	Empirical strategy
	Environmental regulation measure
	Patent data

	Results
	Baseline results
	Robustness analysis
	Placebo
	Dynamic analysis
	Spatial analysis

	Endogeneity
	Final remarks

