Low carbon energy R&D portfolios that are robust when models and experts disagree

Erin Baker, University of Massachusetts, Amherst Innovation and Climate Change Governance

Paris, France May 19, 2022

UMass

Amherst

Energy

Institute

ransition @

Model uncertainty

Mercado Fernandez, R., 2020. Robust and Sustainable Energy Pathways to Reach Mexico's

Climate Goals.

Interagency Working Group on Social Cost of Carbon. (2010). Technical support document: Social cost

of carbon for regulatory impact analysis under executive order 12866.

damage functions from FUND, PAGE, DICE

Capacity and energy portfolios for Mexico in 2050 based on 7 IAMs

Decision Making under Deep Uncertainty

Decision Making Under Uncertainty

(a) Analytical

(b) Decision Frameworks

(c) Types of Results

Anadon, Baker, & Bosetti Nature Energy, 2 (2017): 17071

- Traditional:
 - "lacking externally consistency"

Mathematically resolve disagreement resulting in a single best recommendation

Mathematically resolve disagreement resulting in a single best recommendation

Mathematically resolve disagreement resulting in a single best recommendation

Finding common ground when experts and models disagree: Robust Portfolio Decision Analysis

Aalto University

School of Science

Erin Baker, University of Massachusetts Valentina Bosetti, Bocconi University and FEEM Ahti Salo, Aalto University

> Baker, E., Bosetti, V. and Salo, A., 2020. Robust portfolio decision analysis: An application to the energy research and development portfolio problem. European Journal of Operational Research, 284(3), pp.1107-1120.

> > erc

Our approach: Robust Portfolio **Decision Analysis**

- Considers *portfolios of alternatives* (technologies, policies)
- {high R&D into nuclear; solar subsides; 450ppm; cap&trade} possible portfolios
 - {low R&D into nuclear; solar subsidies; carbon tax}
 - Results in a set of "good" alternatives
 - {portfolio1, portfolio 7, portfolio 10,...}
 - Provides insights about good individual projects
 - core projects = {solar subsidies, ...}

Our approach: Robust Portfolio **Decision Analysis**

- Considers *portfolios of alternatives* (technologies, policies)
- {high R&D into nuclear; solar subsides; 450ppm; cap&trade} possible portfolios
 - {low R&D into nuclear; solar subsidies; carbon tax}
 - Results in a set of "good" alternatives
 - {portfolio1, portfolio 7, portfolio 10,...}
 - Provides insights about good individual projects
 - core projects = {solar subsidies, ...}

May help to open up the dialogue on climate change. "Emphasize solutions and benefits".

All sets on this slide are purely illustrative; these are not results.

Center for Research on Environmental Decisions and ecoAmerica. (2014). Connecting on Climate: A Guide to Effective Climate Change Communication. New York and Washington, D.C.

An alternative, *A* dominates another *B*, if *A* is better than *B* under all beliefs

In the literature as "admissibility", "knightian decision making", "objective rationality", "unambiguous preferences".

An alternative, *A* dominates another *B*, if *A* is better than *B* under all beliefs

 $E[u(A)] > E[u(B)] \quad E[u(A)] = E[u(B)] \quad E[u(A)] > E[u(B)]$ A Belief-Dominates B

$E[u(C)] > E[u(D)] \quad E[u(C)] = E[u(D)] \quad E[u(C)] < E[u(D)]$ There is no dominance between C & D.

In the literature as "admissibility", "knightian decision making", "objective rationality", "unambiguous preferences".

An alternative is *non-dominated* if there is no other alternative that dominates it.

Eckholm & Baker 2019

An alternative is *non-dominated* if there is no other alternative that dominates it.

Dominance Concepts • *Belief*: fix U; alternative x dominates alternative x' $\int U(\mathbf{x}; z) f(z; \mathbf{x}) dz \ge \int U(\mathbf{x}'; z) f(z; \mathbf{x}') \quad \forall f \in \Phi$

• *Stochastic*: fix x; distribution f dominates distribution g

$$\int U(\mathbf{x};z)f(z)dz \ge \int U(\mathbf{x};z)g(z) \ \forall \mathbf{U} \in \mathbf{V}_{S}$$

• *Pareto*: fix f; alternative x dominates alternative x'

$$\int U(\mathbf{x};z)f(z)dz \ge \int U(\mathbf{x};z)f(z) \quad \forall \mathbf{U} \in \mathbf{V}_{P}$$

Belief non-dominance encompasses robustness concepts

Theorem: At least one optimal solution to robustness concept C is in the belief-non-dominated set.

From portfolios to individual alternatives

- Each portfolio is made up of individual projects i=1..I
- Define $x_i = 1$ if project i is funded and 0 otherwise
- Define a portfolio $\vec{x} \equiv (x_1, ..., x_N)$
- Let ND = {non-dominated portfolios}

$$core \equiv \left\{ i \mid x_i = 1 \ \forall \vec{x} \in ND \right\}$$
$$ext \equiv \left\{ i \mid x_i = 0 \ \forall \vec{x} \in ND \right\}$$
$$bord \equiv \left\{ i \mid i \notin core \text{ and } i \notin ext \right\}$$

non-dominated portfolios

a	b	С	d	e	f
1	0	0	1	1	0
1	0	1	1	1	0
1	0	0	1	1	0
0	0	1	1	0	1
0	0	0	1	0	1
0	0	1	1	0	1

project \mathbf{b} is in exterior; project \mathbf{d} is in core

Public energy technology R&D portfolios: Deep parameter uncertainty

Proof of concept: Energy Technology R&D Portfolio in Response to Climate Change.

Results: non-dominated portfolios

Portfolio	Technologies					R&D	Objectives ENPV(Cost in billions of \$2		
	Solar	Nuc	BF	BE	CCS	(\$millions)	Harvard	FEEM	UMass
1	Low	Mid	Mid	High	Low	47	22671	25442	15142
2	Low	Mid	Mid	High	Mid	59	21806	24434	15213
3	Mid	Mid	Mid	High	Mid	61	21659	24379	15528
4	Low	Mid	High	High	Mid	75	21654	24188	15720
5	Mid	Mid	High	High	Mid	78	21513	24163	16162
6	Mid	High	Mid	High	Mid	220	21741	24548	15509
7	Low	High	High	High	Mid	234	21770	24327	15509
8	Mid	High	High	High	Mid	237	21588	24345	15813
9	High	Mid	Low	High	High	239	21325	22747	20003
10	High	High	Low	High	High	398	21581	22901	19324

Portfolios	Robustness Concepts								
	SEUa	α-Maxmin	Minmax Regret	KMM (equal weights)					
1	Umass	$\alpha = 0$ (Maximax)							
2	Equal weight	α = 0.10.6		Above 32.4					
3									
4		$\alpha = 0.7$		6.3-32.4					
5			Minmax Regret	6.0 - 6.2					
6									
7									
8									
9	FEEM, Harvard	$\alpha = 0.9, 1$ (Maxmin)		below 4.7					
10		$\alpha = 0.8$		4.7 - 6.0					

Portfolios	Robustness Concepts								
	SEUa	α-Maxmin	Minmax Regret	KMM (equal weights)					
1	Umass	$\alpha = 0$ (Maximax)							
2	Equal weight	α = 0.10.6		Above 32.4					
3									
4		$\alpha = 0.7$		6.3-32.4					
5			Minmax Regret	6.0 - 6.2					
6									
7									
8									
9	FEEM, Harvard	$\alpha = 0.9, 1$ (Maxmin)		below 4.7					
10		$\alpha = 0.8$		4.7 - 6.0					

Which Portfolio is ranked first for each weighting

Robustness: In the top 2 or top 3

Results: core and exterior projects

Portfolio		Те	chnologie	s		R&D	Objectives E	NPV(Costin bil	lions of \$2005)
	Solar	Nuc	BF	BE	ccs	(\$millions)	Harvard	FEEM	UMass
1	Low	Mid	Mid	High	Low	47	22671	25442	15142
2	Low	Mid	Mid	High	Mid	59	21806	24434	15213
3	Mid	Mid	Mid	High	Mid	61	21659	24379	15528
4	Low	Mid	High	High	Mid	75	21654	24188	15720
5	Mid	Mid	High	High	Mid	78	21513	24163	16162
6	Mid	High	Mid	High	Mid	220	21741	24548	15509
7	Low	High	High	High	Mid	234	21770	24327	15509
8	Mid	High	High	High	Mid	237	21588	24345	15813
9	High	Mid	Low	High	High	239	21325	22747	20003
10	High	High	Low	High	High	398	21581	22901	19324

BE high is in core; Nuc low is in exterior

 \wedge

Individual investments on simplex

		Biofuel L	Biofuel M	Biofuel H
Investment Level Low Mid High	Alternative is in a portfolio is Ranked 1 st or 2 nd	PECM	FEED TEED THE THE THE THE THE THE THE THE THE THE	FEM 10000 FEM
	Alternative is in a portfolio is Ranked 1 st , 2 nd or 3 rd	FEM	FEM Feneral	FED T T T T T T T T T T T T T

Public energy technology R&D portfolios: Deep model uncertainty

From: Low carbon energy R&D portfolios that are robust to model uncertainty by Frankyn Kanyako, Erin Baker, & David Anthoff, 2021

Proof of concept: Energy Technology R&D Portfolio in Response to Climate Change under model uncertainty

Given a climate goal (no policy; \$50/tC; \$125/tC):

Results: Solar and Bio-electricity are robust (under \$125/tCO₂)

Portfolio		Total R&D				
	Solar	Nuclear	Biofuels	Bio-elec	CCS	USD \$2019)
1	High	Low	Low	High	Low	80.75
2	High	Low	Mid	High	Low	83.66
3	High	Low	Low	High	Mid	95.88
4	High	Mid	Low	High	Low	97.42
5	High	Mid	Mid	High	Low	100.33
6	High	Low	High	High	Low	105.02
7	High	Mid	Low	High	Mid	112.55
8	High	Mid	Mid	High	Mid	115.47
9	High	Mid	High	High	Low	121.69
10	High	Mid	High	High	Mid	136.82
11	High	High	Low	High	Low	301.69
12	High	Mid	Low	High	High	306.56
13	High	High	Low	High	Mid	316.82
14	High	High	Mid	High	Mid	319.73
15	High	High	High	High	Low	325.96
3 1 16	High	High	Low	High	High	510.82

Models are most important for nuclear

Some portfolios are in non-dominated set for all 3 policies

Portfolio			Total R&D			
	Solar	Nuclear	Biofuels	Bio-elec	CCS	USD \$2019)
1	High	Low	Low	High	Low	80.75
2	High	Low	Mid	High	Low	83.66
3	High	Low	Low	High	Mid	95.88
4	High	Mid	Low	High	Low	97.42
5	High	Mid	Mid	High	Low	100.33
6	High	Low	High	High	Low	105.02
7	High	Mid	Low	High	Mid	112.55
8	High	Mid	Mid	High	Mid	115.47
9	High	Mid	High	High	Low	121.69
10	High	Mid	High	High	Mid	136.82
11	High	High	Low	High	Low	301.69
12	High	Mid	Low	High	High	306.56
13	High	High	Low	High	Mid	316.82
14	High	High	Mid	High	Mid	319.73
15	High	High	High	High	Low	325.96
4 16	High	High	Low	High	High	510.82

Conclusions

- Deep uncertainty is important in climate change, technology policy, and other issues.
- Analysis under deep uncertainty
 - Tradeoffs between flexibility, external consistency, internal consistency
 - Methods that use analysis to avoid mistakes and shine light on tradeoffs and disagreements
- By focusing on a set of good alternatives, RPDA uses the best available knowledge to support decision making in a way that preserves flexibility for decision makers.

Backup slides

Parameter Uncertainty: Data-based vs elicitation-based forecasts

the National Academy of Sciences, 118(27).

The computational model

$$H(\mathbf{x}, \tau) \equiv \sum_{l=1}^{1000} p_{\tau}(\mathbf{z}_{l}; \mathbf{x}) TAC(\mathbf{z}_{l}, s) + \kappa B(\mathbf{x}) \quad \text{For s} = 2.6 \ (\sim 450 \text{ppm})$$

s.t. $\sum_{j} x_{ij} = 1 \ \forall i$
• x belief dominates x' if $H(\mathbf{x}, \tau) \leq H(\mathbf{x}', \tau) \quad \forall \tau$

 $x_{ij} = 1$ if technology i is invested in at the jth funding level; 0 otherwise i = solar, nuclear, CCS, bio-elec, bio-fuel j = low, mid, high TAC(z,s) = total abatement cost for stabilization s, tech outcome z B(x) = total R&D investment for portfolio x $\kappa = \text{opportunity cost of investment}$

 p_τ is the discrete probability of outcome z_l given investment x. We use importance sampling to estimate p_τ .

38

Models are most important for nuclear

Deep Uncertainty and Dynamic Consistency

From: Ekholm, Tommi; Erin Baker, *Multiple Beliefs*, Dominance, and Dynamic Consistency, Management Science

What is dynamic inconsistency? 1 minmax regr maxmin Strategy: Non-dominated (c,c,c)strategies 2nd, 0.8 2nd, Expected value under belief 2 1st (c,a,c) signal signal (b,a,c) • 2 1 (c,a,b) (b,a,b) • 0.6 Dominated С С a (a,a,b) strategies b С a 0.4 . . . (a,a,c) ۲ 0.2 0 0 0.2 0.4 0.6 0.8 1 Expected value under belief 1

Dynamic inconsistency: Theoretical results

Definitions

- 1. Fallacious Inconsistency:
 - Second-stage action of an "optimal" strategy is sub-optimal in the second stage
- Fallible Inconsistency: Second-stage action that wasn't "optimal" in the first stage is optimal in the second stage

Theoretical results

- The two definitions are equivalent for complete orders
 - Non-EU are subject to both
 - SEU avoids both
- Belief Dominance:

 $ND_1 \Rightarrow ND_2$

but

avoids Fallacious Inconsistency;

 $ND_1 \not \Leftrightarrow ND_2$

is subject to Fallible Inconsistency

Example: Non-dominated mitigation strategies

Decision making under conflicting beliefs induces a tradeoff between flexibility and consistency

	Flexibility for decision makers	Weak Consistency	Strong Consistency
Belief Dominance	Y	Y	Ν
Subjective Expected Utility	Ν	Y	Y
Non-expected utility	Ν	Ν	Ν