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Conﬂicting forecasting methods
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Decision Making under Deep

Uncertainty
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Decision Making Under Uncertainty

(a) Analytical (b) Decision Frameworks (c) Types of Results
Components
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Deep Uncertainty - Approaches
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Deep Uncertaln’%y - Approaches
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Finding common ground when experts

and models disagree:

Robust Portfolio Decision Analysis

Erin Baker, University of Massachusetts
Valentina Bosetti, Bocconi University and FEEM
Ahti Salo, Aalto University

Baker, E., Bosetti, V. and Salo, A., 2020. Robust
portfolio decision analysis: An application to the
energy research and development portfolio problem.
European Journal of Operational Research 284(3)
pp-1107-1120. :

A' Aalto University erc

School of Science BRI
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Our approach: Robust Portfolio

Decision Analysis

® Considers portfolios of alternatives (technologies, policies)
possible | @ {high R&D into nuclear; solar subsides; 450ppm; cap&trade}

tfoli : 1di
portiotios | o {low R&D into nuclear; solar subsidies; carbon tax}

® Results in a set cf “good”a]tematives
° {por?foliol, por?folio 7, porgfolio 10, .. }
® Provides insights about good individual projects

® core projects = {solar subsidies, ...}

@ All sets on this slide are purely illustrative; these are not results.
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Our approach: Robust Portfolio

Decision Analysis

® Considers portfolios of alternatives (technologies, policies)
possible { ¢ {high R&D into nuclear; solar subsides; 450ppm; cap&trade}

tfoli : 1di
portiotios | o {low R&D into nuclear; solar subsidies; carbon tax}

® Results in a set cf “good”a]tematives
° {por?foliol, por?folio 7, porgfolio 10, .. }
® Provides insights about good individual projects

® core projects = {solar subsidies, ...}

&

.,1-; < by May help to open up the dialogue on climate

» 5@ change. “Emphasize solutions and benetfits”.

Center for Research on Environmental Decisions and ecoAmerica. (2014)
All sets on this slide are purely illustrative; these are not results. Connecting on Climate: A Guide to Effective Climate Change
K Communication. New York and Washington, D.C. /




Belief Domi

Nance

An alternative, A dominates another B, if A is better than B under all beliefs

(-

/

E[u(A)] = E[uB)]  E[u(A)] = E[uB)]  E[u(A)] = E[u(B)]

E[u(C)] > E[u(D)]
There

A Belief-Dominates B

E[u(C)] = E[u(D)]  E[u(C)] < E[u(D)]

is no dominance between C & D.

In the literature as “admissibility”, “knightian decision making”, “objective rationality”,

<« . »
unambiguous preferences”.

/




Belief Dominance

An alternative, A dominates another B, if A is better than B under all beliefs
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: Belief Dominance

Expected value under belief 1

@ /N

An alternative is non-dominated if there is no other alternative that dominates it.

1
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: Belief Dominance

An alternative is non-dominated if there is no other alternative that dominates it.

minmax regret —, ~ maxmin

6 (c,a,c)
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Dominance Concepts

® Belief: tix Uj; alternative x dominates alternative x’

jU (x;2)f (z;x)dz 2JU (x52)f (z;x") Vf e D
® Stochastic: fix x; distribution f dominates distribution g
IU (x;2)f (z)dz > IU (x;2)g(z) VU eV

® Pareto: fix {; alternative x dominates alternative x’

IU (x;2)f (z)dz ZIU (x;2)f (z) YU eV,

(-,
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Belief non-dominance encompasses

robustness concepts

Theorem: At least one optimal solution to robustness concept

C is in the belief-non-dominated set.

Belief—non dominated set
Maxmin Minmax
Regre \
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From portfolios to individual

alternatives

® Each portfolio is made up of individual projects i=1..1
® Define x,=1 if project i is funded and O otherwise

® Define a portfolio X = (X0 Xy )

® Let ND = {non-dominated portfolios}

non-dominated portfolios

d

core={i|x =1VXe ND}
ext={i|x =0 VX e ND!

1

1

o _ 1

bord = {i|i & core and i  ext} 0
0

0

ol Noll ol Nol el el Nea

f
0
0
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1
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e
1 1
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@ project b is in exterior; project d is in core




Public energy technology R&D portfolios:

Deep parameter uncertainty




Proof of concept: Energy Technology R&D
Portfolio in Response to Climate Change.

Given a Representative Concentration Pathway (RCP) of 2.6 w/ m? (~450ppm):

Technol IAM chooses
R&D Investment cCanology Implementation
Performance

3 sets of elicitations on 5
Ea technologies plus combined
Biofuels, eff % CCSEP % Solar LCOE $/kWh

Bioelectricity, eff
o




Results: non-dominated portfolios

Portfolio Technologies R&D |Objectives ENPV/(cCostin billions of $2005)
($millions) | Harvard UMass
1 47 15142
2 59 15213
3 61 21659 24379 15528
4 75 21654 24188 15720
5 78 21513 24163 16162
6 220 21741 15509
7 234 21770 24327 15509
8 237 21588 24345 15813
9 239 21325 22747
398 21581 22901

@ 10 out of 243 total are non-dominated J
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Robustness Concepts
Portfolios
Minmax
- SEUa Ol-Maxmin KMM (equal weights)
Regret
a=0
1 Umass (Maximax)
Beell vk &= Above 32.4
2 quatwelg 0.1...0.6 ove <
Minmax
6.0 _ 6.2
Regret
=0.9,1
FEEM, Harvard a=0 9.’ below 4.7
(Maxmin)
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Robustness Concepts
Portfolios
Minmax
- SEUa Ol-Maxmin KMM (equal weights)
Regret
a=0
1 Umass (Maximax)
Beell vk &= Above 32.4
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Which Portfolio is ranked first for each

weighting

Portfolio Ranked 1st
1
2
3

o4

FEEM
100

60

40

20

Qo

Harvard
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Robustness: In the top 2 or top 3

Portfolio 2

Portfolio 7

Portfolio

is

Ranked 1st or

2nd

aaaaaa

aaaaaa

Portfolio

is

Ranked 1°t, 2

or 3™




Results: core and exterior projects

(-

Portfolio T >chnologie s R&D |Objectives ENPV(cCostin billions of $2005)
Solar 'Nuc BF BE CCS ($millions) Harvard UMass
1|Low Mid Mid Low 47 15142
2|Low Mid Mid Mid 59 15213
3|Mid Mid Mid Mid 61 21659 24379 15528
4{Low Mid Mid 75 21654 24188 15720
5|Mid Mid Mid 78 21513 24163 16162
6|Mid Mid 220 21741 15509
/|Low Mid 234 21770 24327 15509
8(Mid i 237 21588 24345 15813
9 239 21325
10 . 398 21581

BE high is in core; Nuc low is in exterior




Individual investments on simplex

Solar

CCS

BE

BF

Nuclear

FEEM

FEEM

FEEM
x

(-

Investment Level
Low
Mid
® High

Biofuel L

Biofuel M

Biofuel H

Alternativeisin a
portfoliois Ranked 15t or
2nd

Alternativeisin a
portfoliois Ranked 1°t,
2nd or 31d

e




Public energy technology R&D

portfolios: Deep model uncertainty

From: Low carbon energy R&D portfolios that are robust
to model uncertainty by Frankyn Kanyako, Erin Baker,
& David Anthotf, 2021
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Proof of concept: Energy Technology R&D N
Portfolio in Response to Climate Change under

model uncertainty
Darnage 7
Models

Given a climate goal (no policy; $50/tC; $125/tC):

Technology
Performance

GCAM chooses

R&D Investment Implementation

m 3 sets of elicitations on 5
Ea technologles plus combined

Bioelectricity, eff Biofuels, eff % Solar LCOE $/kWh

DICE; PAGE; FUND

Loss [Global damages / global GOP]
= = e = o o o
8 2 =1 & 8 ] -]




Results: Solar and Bio-electricity are

robust (under $125/tC0O,)

: ] Total R&D

Portfolio Technologies (In million

Solar | Nuclear | Biofuels | Bio-elec| CCS [ USD $2019)
1 80.75
2 Mid 83.66
3 Mid 95.88
4 Mid 97.42
5 Mid Mid 100.33
6 105.02
7 Mid Mid 112.55
8 Mid Mid Mid 115.47
9 Mid 121.69
10 Mid Mid 136.82
11 301.69
12 Mid 306.56
13 Mid 316.82
14 Mid Mid 319.73
15 325.96
16 510.82

™




Models are most important for nuclear

DICE PAGE FUND
Nuclear . )
mid
] b ] ) & % s
CCsS

Biofuels
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Some portfolios are in non-dominated

set for all 3 policies

: ] Total R&D

Portfolio Technologies (In million

Solar | Nuclear | Biofuels | Bio-elec| CCS [ USD $2019)
1|High Low Low High Low 80.75
2|High Low Mid High Low 83.66
3|High Low Low High Mid 95.88
4 |High Mid Low High Low 97.42
5 Mid Mid 100.33
6/High  [Low High |High Low 105.02
7 Mid Mid 112.55
8|High Mid Mid High Mid 115.47
9(High Mid High High Low 121.69
10|High Mid High High Mid 136.82
11|High High Low High Low 301.69
14 Mid Mid 319 73
15 325.96
510.82

™




Conclusions

® Deep uncertainty is important in climate change, technology

policy, and other issues.

o Analysis under deep uncertainty

® Tradeofts between flexibility, external consistency, internal

consistency
® Methods that use analysis to avoid mistakes and shine light on
tradeoffs and disagreements
* By focusing on a set of good alternatives, RPDA uses the best

available knowledge to support decision making in a way that

preserves ﬂexibility for decision makers.

©
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Parameter Uncertainty: pata-based vs elicitation-based forecasts

fa) Nuclear electricity b)) PV module
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The computational model

1000

H ( Zp (z;;X)TAC(z,,5)+&B(x)  Fors = 26(~450ppm)

.. qu =1 Vi

e x belief dominates x’ if H (X, T) <H (X', T) V1

x; =1 1f technology I Is invested in at the jth funding level; O otherwise

1 = solar, nuclear, CCS, bio-elec, bio-fuel

j = low, mid, high

TAC(z,s) = total abatement cost for stabilization s, tech outcome z
B(x) = total R&D investment for portfolio x

K= opportunity cost of investment

p, is the discrete probability of outcome z given investment x. We

@use importance sampling to estimate Pr -
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Models are most important for nuclear

DICE PAGE
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Nuclear
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Deep Uncertainty and Dynamic

Consistency

From: Ekholm, Tommi; Erin Baker, Multiple Beliefs,
Dominance, and Dynamic Consistency, Management
Science
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Expected value under belief 2

©

What is dynamic inconsistency?

1
Non-dominated minmax regy
- (c.c.c)
Ll d
0.8
®
. |° Y
o (c,a,b) b,a,b
0.6 : e
Dominated (a,a,b)
strategies . ? : ,
C
0.4
. . . (a,a,c)
0.2 ¢
®
® ol
0
0 0.2 0.4 0.6 0.8 1

Expected value under belief 1

Strate gy:

Ist 2nd, 2nd,
signal signal
1 i
C a C

a

b
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Dynamic inconsistency: Theoretical results

Definitions

1. Fallacious Inconsjstency:
Second—stage action of an “optimal” strategy is sub—optimal in the
second stage

2. Fallible Inconsistency:
Second—stage action that wasn’t “optimal” in the first stage is
optimal in the second stage

Theoretical results

® The two definitions are equivalent for complete orders
® Non-EU are subject to both
e SEU avoids both

e Belief Dominance:

ND,=ND, | & | ND, ¥ ND,

@ avoids Fallacious Inconsistency; is subject to Fallible Inconsistency

™
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Example: Non-dominated mitigation strategies

Lower climate sensitivity

Higher climate sensitivity

26

Lower damages
24

2070’ emissions1Gt CO, [ eq

22

20

Higher damages
12 14 16

2070’emissions[1Gt CO, [eq |
10

8

6

| | | | | |
32 34 36 38 40 42
2030emissions[IGtCO, eq

44 32

B first-stage NDS
second-stage NDS

symmetric Cs, unconcerned
skewed Cs, unconcerned

(-

I
34

| | | | |
36 38 40 42 44

2030Lemissions[IGtCO, Leql

symmetric Cs, alarmist
skewed Cs, alarmist
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Decision making under conflicting beliefs induces a
tradeoff between flexibility and consistency

Flexibility for Weak Consistency Strong Consistency
decision makers
Belief Dominance Y Y N
Subjective Expected N Y
Utility
Non—expected utility N N N

™
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