Peer effects in green technology adoption: Evidence from electric vehicles

Elisabeth Isaksen¹ Bjørn Johansen² Oddbjørn Raaum¹

¹The Ragnar Frisch Centre for Economic Research ²Institute of Transport Economics

International conference on innovation and climate change governance, INRAE, Paris. May 20, 2022

- Many of our decisions are influenced by what our peers are doing
 - Information, learning, social norms, status seeking
- Peer effects are documented in a lot of different domains
 - Work and school performance, paternity leave, welfare cultures, consumption levels, energy conservation, solar panel adoption, etc.
 - Typically one network at a time (e.g., neighbors, colleagues, fellow students, family dynasty)
- This paper: Peer effects in battery electric vehicle (BEV) adoption
 - Does the BEV ownership of our peers affect own BEV adoption?
 - Networks: colleagues and family members
 - Detailed Norwegian registry data + quasi-experimental research design

- Many of our decisions are influenced by what our peers are doing
 - Information, learning, social norms, status seeking
- Peer effects are documented in a lot of different domains
 - Work and school performance, paternity leave, welfare cultures, consumption levels, energy conservation, solar panel adoption, etc.
 - Typically one network at a time (e.g., neighbors, colleagues, fellow students, family dynasty)
- This paper: Peer effects in battery electric vehicle (BEV) adoption
 - Does the BEV ownership of our peers affect own BEV adoption?
 - Networks: colleagues and family members
 - Detailed Norwegian registry data + quasi-experimental research design

- Many of our decisions are influenced by what our peers are doing
 - Information, learning, social norms, status seeking
- Peer effects are documented in a lot of different domains
 - Work and school performance, paternity leave, welfare cultures, consumption levels, energy conservation, solar panel adoption, etc.
 - Typically one network at a time (e.g., neighbors, colleagues, fellow students, family dynasty)
- This paper: Peer effects in battery electric vehicle (BEV) adoption
 - Does the BEV ownership of our peers affect own BEV adoption?
 - Networks: colleagues and family members
 - Detailed Norwegian registry data + quasi-experimental research design

- Many of our decisions are influenced by what our peers are doing
 - Information, learning, social norms, status seeking
- Peer effects are documented in a lot of different domains
 - Work and school performance, paternity leave, welfare cultures, consumption levels, energy conservation, solar panel adoption, etc.
 - Typically one network at a time (e.g., neighbors, colleagues, fellow students, family dynasty)

- Does the BEV ownership of our peers affect own BEV adoption?
- Networks: colleagues and family members
- Detailed Norwegian registry data + quasi-experimental research design

- Many of our decisions are influenced by what our peers are doing
 - Information, learning, social norms, status seeking
- Peer effects are documented in a lot of different domains
 - Work and school performance, paternity leave, welfare cultures, consumption levels, energy conservation, solar panel adoption, etc.
 - Typically one network at a time (e.g., neighbors, colleagues, fellow students, family dynasty)

- Does the BEV ownership of our peers affect own BEV adoption?
- Networks: colleagues and family members
- Detailed Norwegian registry data + quasi-experimental research design

- Many of our decisions are influenced by what our peers are doing
 - Information, learning, social norms, status seeking
- Peer effects are documented in a lot of different domains
 - Work and school performance, paternity leave, welfare cultures, consumption levels, energy conservation, solar panel adoption, etc.
 - Typically one network at a time (e.g., neighbors, colleagues, fellow students, family dynasty)

- Does the BEV ownership of our peers affect own BEV adoption?
- Networks: colleagues and family members
- Detailed Norwegian registry data + quasi-experimental research design

- Many of our decisions are influenced by what our peers are doing
 - Information, learning, social norms, status seeking
- Peer effects are documented in a lot of different domains
 - Work and school performance, paternity leave, welfare cultures, consumption levels, energy conservation, solar panel adoption, etc.
 - Typically one network at a time (e.g., neighbors, colleagues, fellow students, family dynasty)

- Does the BEV ownership of our peers affect own BEV adoption?
- Networks: colleagues and family members
- Detailed Norwegian registry data + quasi-experimental research design

- **Better understand what influences electric vehicle adoption**
 - ▶ 1.5° goal requires dramatic reductions in CO₂ emissions
 - BEV key technology to decarbonize transportation
- BEVs are particularly relevant for studying peer effects/social multipliers
 - ► Visible good: can be observed by peers
 - New technology: information and learning may be important
 - Environmental externalities: social norms may be particularly important
 - ► Indirect network effects via charging infrastructure: Peers' buy BEV → more charging stations → my utility of a BEV ↑
- Peer effects have important implications for policymakers
 - Total effect of policy = direct effect + indirect effects (social interactions, indirect network effects)

- ► 1.5° goal requires dramatic reductions in CO₂ emissions
- BEV key technology to decarbonize transportation
- BEVs are particularly relevant for studying peer effects/social multipliers
 - ► Visible good: can be observed by peers
 - New technology: information and learning may be important
 - Environmental externalities: social norms may be particularly important
 - ► Indirect network effects via charging infrastructure: Peers' buy BEV → more charging stations → my utility of a BEV ↑
- Peer effects have important implications for policymakers
 - Total effect of policy = direct effect + indirect effects (social interactions, indirect network effects)

Better understand what influences electric vehicle adoption

- ▶ 1.5° goal requires dramatic reductions in CO₂ emissions
- BEV key technology to decarbonize transportation

BEVs are particularly relevant for studying peer effects/social multipliers

- ► Visible good: can be observed by peers
- New technology: information and learning may be important
- Environmental externalities: social norms may be particularly important
- ► Indirect network effects via charging infrastructure: Peers' buy BEV → more charging stations → my utility of a BEV ↑
- Peer effects have important implications for policymakers
 - Total effect of policy = direct effect + indirect effects (social interactions, indirect network effects)

Better understand what influences electric vehicle adoption

- ▶ 1.5° goal requires dramatic reductions in CO₂ emissions
- BEV key technology to decarbonize transportation

BEVs are particularly relevant for studying peer effects/social multipliers

- Visible good: can be observed by peers
- New technology: information and learning may be important
- Environmental externalities: social norms may be particularly important
- ► Indirect network effects via charging infrastructure: Peers' buy BEV → more charging stations → my utility of a BEV ↑
- Peer effects have important implications for policymakers
 - Total effect of policy = direct effect + indirect effects (social interactions, indirect network effects)

- ▶ 1.5° goal requires dramatic reductions in CO₂ emissions
- BEV key technology to decarbonize transportation
- BEVs are particularly relevant for studying peer effects/social multipliers
 - Visible good: can be observed by peers
 - New technology: information and learning may be important
 - Environmental externalities: social norms may be particularly important
 - ► Indirect network effects via charging infrastructure: Peers' buy BEV → more charging stations → my utility of a BEV ↑
- Peer effects have important implications for policymakers
 - Total effect of policy = direct effect + indirect effects (social interactions, indirect network effects)

- ▶ 1.5° goal requires dramatic reductions in CO₂ emissions
- BEV key technology to decarbonize transportation
- BEVs are particularly relevant for studying peer effects/social multipliers
 - Visible good: can be observed by peers
 - New technology: information and learning may be important
 - Environmental externalities: social norms may be particularly important
 - ► Indirect network effects via charging infrastructure: Peers' buy BEV → more charging stations → my utility of a BEV ↑
- Peer effects have important implications for policymakers
 - Total effect of policy = direct effect + indirect effects (social interactions, indirect network effects)

- ▶ 1.5° goal requires dramatic reductions in CO₂ emissions
- BEV key technology to decarbonize transportation
- BEVs are particularly relevant for studying peer effects/social multipliers
 - Visible good: can be observed by peers
 - New technology: information and learning may be important
 - Environmental externalities: social norms may be particularly important
 - ► Indirect network effects via charging infrastructure: Peers' buy BEV → more charging stations → my utility of a BEV ↑
- Peer effects have important implications for policymakers
 - Total effect of policy = direct effect + indirect effects (social interactions, indirect network effects)

Better understand what influences electric vehicle adoption

- ▶ 1.5° goal requires dramatic reductions in CO₂ emissions
- BEV key technology to decarbonize transportation
- BEVs are particularly relevant for studying peer effects/social multipliers
 - Visible good: can be observed by peers
 - New technology: information and learning may be important
 - Environmental externalities: social norms may be particularly important
 - ► Indirect network effects via charging infrastructure: Peers' buy BEV → more charging stations → my utility of a BEV ↑

► Peer effects have important implications for policymakers

Total effect of policy = direct effect + indirect effects (social interactions, indirect network effects)

- Methodologically difficult to estimate peer effects that can be interpreted causally
- ▶ When members of a group behave similarly it may be due to:
 - Similar characteristics and preferences (e.g., income, age, climate awareness)
 - **Similar surroundings** (e.g. charging infrastructure, free parking)
- Additionally: the reflection problem (Manski, 1993)
 - A group's behavior is a mechanical reflection of its members' behavior
 - Solution: (data) structure with one-way influence
- ► Ideal experiment: randomize BEV ownership of individuals' peer groups. → Try to mimic a setup like this using an IV strategy

- Methodologically difficult to estimate peer effects that can be interpreted causally
- When members of a group behave similarly it may be due to:
 - Similar characteristics and preferences (e.g., income, age, climate awareness)
 - Similar surroundings (e.g. charging infrastructure, free parking)
- Additionally: the reflection problem (Manski, 1993)
 - A group's behavior is a mechanical reflection of its members' behavior
 - Solution: (data) structure with one-way influence
- ► Ideal experiment: randomize BEV ownership of individuals' peer groups. → Try to mimic a setup like this using an IV strategy

- Methodologically difficult to estimate peer effects that can be interpreted causally
- When members of a group behave similarly it may be due to:
 - Similar characteristics and preferences (e.g., income, age, climate awareness)
 - Similar surroundings (e.g. charging infrastructure, free parking)
- Additionally: the reflection problem (Manski, 1993)
 - A group's behavior is a mechanical reflection of its members' behavior
 - Solution: (data) structure with one-way influence
- Ideal experiment: randomize BEV ownership of individuals' peer groups. → Try to mimic a setup like this using an IV strategy

- Methodologically difficult to estimate peer effects that can be interpreted causally
- When members of a group behave similarly it may be due to:
 - Similar characteristics and preferences (e.g., income, age, climate awareness)
 - Similar surroundings (e.g. charging infrastructure, free parking)
- Additionally: the reflection problem (Manski, 1993)
 - A group's behavior is a mechanical reflection of its members' behavior
 - Solution: (data) structure with one-way influence
- ► Ideal experiment: randomize BEV ownership of individuals' peer groups. → Try to mimic a setup like this using an IV strategy

- Methodologically difficult to estimate peer effects that can be interpreted causally
- ▶ When members of a group behave similarly it may be due to:
 - Similar characteristics and preferences (e.g., income, age, climate awareness)
 - Similar surroundings (e.g. charging infrastructure, free parking)
- Additionally: the reflection problem (Manski, 1993)
 - A group's behavior is a mechanical reflection of its members' behavior
 - Solution: (data) structure with one-way influence
- ► Ideal experiment: randomize BEV ownership of individuals' peer groups. → Try to mimic a setup like this using an IV strategy

Similar characteristics and context:

- Income, education, age, famility type
- Environmental awareness
- Neighborhood amenities: charging facilities, free BEV parking

Similar characteristics and context:

- Income, education, age, famility type
- Environmental awareness
- Neighborhood amenities: charging facilities, free BEV parking

BEV coworkers

Exploit quasi-random variation in exposure to road toll on the work commute

Exemption from road toll stated as an important incentive

Notes: Question: Select the 3 most important EV incentives. Number of respondents: 12,500. Source: Norwegian EV owners survey 2017

Potential mechanisms driving peer effects

 $Pr(BEV_i)$

Social interactions:

- Learning
- Information
- Social norm
- Status seeking

BEV coworkers

Potential mechanisms driving peer effects

Social interactions:

- Learning
- Information
- Social norm
- Status seeking

BEV coworkers

Indirect channel (network effects)

- Higher BEV ownership among colleagues
- \rightarrow More charging facilities at work
- \rightarrow More charging facilities close to work

$2\,\times\,2$ peer groups

Literature

Peer effects in various markets/domains

Labor markets (Cornelissen et al., 2017), product adoption (Bailey et al., 2019), consumption (De Giorgi et al., 2020), program participation (Dahl et al., 2014), retirement saving (Beshears et al., 2015), car purchase (Grinblatt et al., 2008), etc.

Peer effects in climate-friendly technologies or goods

Energy use and social comparison (Allcott and Kessler, 2019; Bailey et al., 2019; Brandon et al., 2019), Rooftop solar panels (Bollinger and Gillingham, 2012; Bollinger et al., 2019), Conspicuous conservation and hybrid cars (Sexton and Sexton, 2014), Water conservation (Bollinger et al., 2020), etc.

Policies to promote electric vehicle adoption

Road tolls and bus lanes (Halse et al., 2022), HOV lanes (Bento et al., 2014), Charging infrastructure (Li et al., 2017), subsides and tax rebates (Gallagher and Muehlegger, 2011; Muehlegger and Rapson, 2018; Clinton and Steinberg, 2019), etc.

1. One of few papers on peer effects in green technology adoption

- 2. First empirical paper on peer effects in BEV adoption
- 3. Exceptionally detailed data \rightarrow better positioned to identify causal effects (compared to other observational studies)
- 4. Examine two distinct peer groups simultaneously (colleagues, family)
- 5. Quantify the social multiplier of electric vehicle policies

- 1. One of few papers on peer effects in green technology adoption
- 2. First empirical paper on peer effects in BEV adoption
- 3. Exceptionally detailed data \rightarrow better positioned to identify causal effects (compared to other observational studies)
- 4. Examine two distinct peer groups simultaneously (colleagues, family)
- 5. Quantify the social multiplier of electric vehicle policies

- 1. One of few papers on peer effects in green technology adoption
- 2. First empirical paper on peer effects in BEV adoption
- 3. Exceptionally detailed data \rightarrow better positioned to identify causal effects (compared to other observational studies)
- Examine two distinct peer groups simultaneously (colleagues, family)
- 5. Quantify the social multiplier of electric vehicle policies

- 1. One of few papers on peer effects in green technology adoption
- 2. First empirical paper on peer effects in BEV adoption
- 3. Exceptionally detailed data \rightarrow better positioned to identify causal effects (compared to other observational studies)
- 4. Examine two distinct peer groups simultaneously (colleagues, family)
- 5. Quantify the social multiplier of electric vehicle policies
Contribution to literature

- 1. One of few papers on peer effects in green technology adoption
- 2. First empirical paper on peer effects in BEV adoption
- 3. Exceptionally detailed data \rightarrow better positioned to identify causal effects (compared to other observational studies)
- 4. Examine two distinct peer groups simultaneously (colleagues, family)
- 5. Quantify the social multiplier of electric vehicle policies

Preview of preliminary results

- BEV ownership among colleagues and family have a large and positive effect on a household's BEV ownership
 - Colleagues have a larger effect than family
 - Male colleagues have a stronger influence than female colleagues
 - Social interactions more likely mechanism than charging stations
- \blacktriangleright Social spillovers increase the effect of a BEV policy by ${\sim}60\%$
 - Policy: road toll with exemption for BEVs

Preview of preliminary results

- BEV ownership among colleagues and family have a large and positive effect on a household's BEV ownership
 - Colleagues have a larger effect than family
 - Male colleagues have a stronger influence than female colleagues
 - Social interactions more likely mechanism than charging stations
- \blacktriangleright Social spillovers increase the effect of a BEV policy by ${\sim}60\%$
 - Policy: road toll with exemption for BEVs

Preview of preliminary results

- BEV ownership among colleagues and family have a large and positive effect on a household's BEV ownership
 - Colleagues have a larger effect than family
 - Male colleagues have a stronger influence than female colleagues
 - Social interactions more likely mechanism than charging stations

\blacktriangleright Social spillovers increase the effect of a BEV policy by ${\sim}60\%$

Policy: road toll with exemption for BEVs

1. The National Motor Vehicle register

- ► Full population of vehicles registered in Norway, 2011-2019
- Owner ID, car characteristics (e.g., model, fuel type)

Household-level BEV ownership share, 2011-2019

Notes: Sample is restricted to couple households where both are working.

1. The National Motor Vehicle register

- ► Full population of vehicles registered in Norway, 2011-2019
- Owner, car characteristics (model, fuel type, etc.)

2. Socioeconomic information and family network

- Income, wealth, education, number of children, etc.
- Partner/spouse, family members (mother, father, siblings)
- 3. Linked employer-employee data
 - Allows us to identify individuals' colleagues
- 4. Geography
 - Residence and workplace location at the neighborhood level
 - $\blacktriangleright\,$ 14 000 neighborhoods, \sim 200 households per neighborhood
- 5. Variables related to work commute (calculated)
 - Road toll on work commute (time-minimizing route between centroids)
 - Driving distance, driving time, km of bus lane

1. The National Motor Vehicle register

- ► Full population of vehicles registered in Norway, 2011-2019
- Owner, car characteristics (model, fuel type, etc.)

2. Socioeconomic information and family network

- Income, wealth, education, number of children, etc.
- Partner/spouse, family members (mother, father, siblings)

3. Linked employer-employee data

Allows us to identify individuals' colleagues

4. Geography

- Residence and workplace location at the neighborhood level
- $\blacktriangleright\,$ 14 000 neighborhoods, \sim 200 households per neighborhood
- 5. Variables related to work commute (calculated)
 - Road toll on work commute (time-minimizing route between centroids)
 - Driving distance, driving time, km of bus lane

1. The National Motor Vehicle register

- ► Full population of vehicles registered in Norway, 2011-2019
- Owner, car characteristics (model, fuel type, etc.)

2. Socioeconomic information and family network

- Income, wealth, education, number of children, etc.
- Partner/spouse, family members (mother, father, siblings)

3. Linked employer-employee data

Allows us to identify individuals' colleagues

4. Geography

- Residence and workplace location at the neighborhood level
- \blacktriangleright 14 000 neighborhoods, \sim 200 households per neighborhood
- 5. Variables related to work commute (calculated)
 - Road toll on work commute (time-minimizing route between centroids)
 - Driving distance, driving time, km of bus lane

1. The National Motor Vehicle register

- ► Full population of vehicles registered in Norway, 2011-2019
- Owner, car characteristics (model, fuel type, etc.)

2. Socioeconomic information and family network

- Income, wealth, education, number of children, etc.
- Partner/spouse, family members (mother, father, siblings)

3. Linked employer-employee data

Allows us to identify individuals' colleagues

4. Geography

- Residence and workplace location at the neighborhood level
- \blacktriangleright 14 000 neighborhoods, \sim 200 households per neighborhood

5. Variables related to work commute (calculated)

- Road toll on work commute (time-minimizing route between centroids)
- Driving distance, driving time, km of bus lane

Illustration of neighborhoods

City of Oslo

Illustration road toll locations (2016)

City of Oslo Norway

Illustration of neighborhoods and road toll locations (2016)

City of Oslo

Sample restrictions

Sample restrictions:

Couple households where both are working

Period:

- ▶ Focus on 2017 (outcome) and 2016 (RHS variables) in main analysis
- Also show results for 2016-2019

	mean	sd	min	max	Ν
Household variables					
BEV_{t+1} (yes $= 1$)	0.12	0.32	0	1	377,590
Road toll (NOK)	5.6	8.5	0	1,412	365,806
Road toll (yes $= 1$)	0.45	0.50	0	1	365,806
Driving time to work (min)	15	12	0	119	365,806
Peer group variables: Coll	eagues				
BEV share	0.06	0.07	0	0.83	377,590
Road toll (NOK)	5.2	4.4	0	98	365,804
Road toll share	0.38	0.29	0	1	365,804
Driving time to work (min)	14	5	0	82	365,804
Number of colleagues	69	68	2	491	377,590
Peer group variables: Fam	ily				
BEV share	0.06	0.16	0	1	301,041
Road toll (NOK)	4.9	6.2	0	139	299,436
Road toll share	0.37	0.35	0	1	299,434
Driving time to work (min)	13	9	0	119	299,436

Table 1: Summary statistics for couple households, 2017 and 2016 (10 NOK \approx 1 EUR)

Notes: All variables are 2016 values with the exception of the first variable in Panel A, BEV_{t+1} (yes = 1), which reflect the 2017 value. Population is restricted to couple households where both are employed. Variables reflect the household mean unless stated otherwise. Peer group variables are based on both single-adult and couple households and are the leave-one-out mean. All NOK values are in real terms (2017 values). 10 NOK \approx 1 EUR

Research design

Main model specification

First stage:

 $\overbrace{\mathsf{BEV share peers}_{t,p}}^{\text{endogenous variable}} = \overbrace{\alpha_1 \text{road toll peers}_{t,r,w}}^{\text{instrument}} + \sigma_2 \text{road toll}_{t,r,w} + \alpha_r + \theta_{w_1} + \theta_{w_2} + \eta_t + \gamma' \mathbf{X}_{t,h,r,w} + \delta Z_{t,p,r,w} + \mu_{ht}$

Second stage:

$$\begin{aligned} \mathsf{Pr}(\mathsf{BEV})_{t+1,h} &= \beta_1 \mathsf{BEV} \text{ share peers}_{t,p} \\ &+ \sigma_2 \mathsf{road toll}_{t,r,w} + \alpha_r + \theta_{w_1} + \theta_{w_2} + \eta_t + \gamma' \mathbf{X}_{t,h,r,w} + \delta Z_{t,p,r,w} + \varepsilon_{ht} \end{aligned}$$

- h: household, p: peer group (colleagues or family)
- r: neighborhood residence, $w = w_1, w_2$: work neighborhood(s)
- α_r : residential neighborhood fixed effects
- ▶ θ_{w_1} , θ_{w_2} : workplace neighborhood fixed effects
- ► X_{t,h,r,w}: vector of household characteristics (incl. work commute controls)
- ▶ $Z_{t,p,r,w}$: vector of peer group characteristic (incl. work commute controls)

Instrument needs to satisfy the following criteria

- Relevance (first stage)
- Exclusion restriction
- Monotonicity

Instrument needs to satisfy the following criteria

- Relevance (first stage)
- Exclusion restriction
- Monotonicity

Figure 2: Residualized relationship between BEV share colleagues and road toll colleagues

Notes: Figure plots residualized BEV share against residualized road toll, where we absorb 3 fixed effects (neighborhood residence, work and work spouse). Line shows polynomial fit. Histogram shows the distribution of residualized road toll.

Dep.var: BEV share colleagues	(1)	(2)	(3)	(4)	(5)
Road toll colleagues (NOK)	0.00606*** (0.000070)	0.00260*** (0.000077)	0.00275*** (0.000109)	0.00251*** (0.000109)	0.00250*** (0.000109)
N (households)	365,804	363,447	307,444	307,444	307,444
Neighborhood FE		\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls			\checkmark	\checkmark	\checkmark
Income and wealth controls				\checkmark	\checkmark
Other socioeconomic controls					\checkmark
Mean BEV share colleagues	0.063	0.063	0.065	0.065	0.065
Mean road toll colleagues (NOK)	5.181	5.191	5.490	5.490	5.490
F statistic (excl. instrument)	7,540	1,136	637	531	530

- ▶ If colleagues' road toll increases by 1 NOK (\sim 0.1 EUR) → colleagues' probability of owning a BEV increases by 0.25 pp
- ► If colleagues' road toll increases by 10 % (~ 0.549 NOK) → colleagues' probability of owning a BEV increases by 0.14 pp (~ 2%)

Dep.var: BEV share colleagues	(1)	(2)	(3)	(4)	(5)
Road toll colleagues (NOK)	0.00606***	0.00260***	0.00275***	0.00251***	0.00250***
	(0.000070)	(0.000077)	(0.000109)	(0.000109)	(0.000109)
N (households)	365,804	363,447	307,444	307,444	307,444
Neighborhood FE		\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls			\checkmark	\checkmark	\checkmark
Income and wealth controls				\checkmark	\checkmark
Other socioeconomic controls					\checkmark
Mean BEV share colleagues	0.063	0.063	0.065	0.065	0.065
Mean road toll colleagues (NOK)	5.181	5.191	5.490	5.490	5.490
F statistic (excl. instrument)	7,540	1,136	637	531	530

- ▶ If colleagues' road toll increases by 1 NOK (\sim 0.1 EUR) → colleagues' probability of owning a BEV increases by 0.25 pp
- ► If colleagues' road toll increases by 10 % (~ 0.549 NOK) → colleagues' probability of owning a BEV increases by 0.14 pp (~ 2%)

Dep.var: BEV share colleagues	(1)	(2)	(3)	(4)	(5)
Road toll colleagues (NOK)	0.00606***	0.00260***	0.00275***	0.00251***	0.00250***
	(0.000070)	(0.000077)	(0.000109)	(0.000109)	(0.000109)
N (households)	365,804	363,447	307,444	307,444	307,444
Neighborhood FE		\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls			\checkmark	\checkmark	\checkmark
Income and wealth controls				\checkmark	\checkmark
Other socioeconomic controls					\checkmark
Mean BEV share colleagues	0.063	0.063	0.065	0.065	0.065
Mean road toll colleagues (NOK)	5.181	5.191	5.490	5.490	5.490
F statistic (excl. instrument)	7,540	1,136	637	531	530

- ► If colleagues' road toll increases by 1 NOK (~ 0.1 EUR) → colleagues' probability of owning a BEV increases by 0.25 pp
- ► If colleagues' road toll increases by 10 % (~ 0.549 NOK) → colleagues' probability of owning a BEV increases by 0.14 pp (~ 2%)

				· · · · · · · · · · · · · · · · · · ·	
Dep.var: BEV share colleagues	(1)	(2)	(3)	(4)	(5)
Road toll colleagues (NOK)	0.00606***	0.00260***	0.00275***	0.00251***	0.00250***
	(0.000070)	(0.000077)	(0.000109)	(0.000109)	(0.000109)
N (households)	365,804	363,447	307,444	307,444	307,444
Neighborhood FE		\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls			\checkmark	\checkmark	\checkmark
Income and wealth controls				\checkmark	\checkmark
Other socioeconomic controls					\checkmark
Mean BEV share colleagues	0.063	0.063	0.065	0.065	0.065
Mean road toll colleagues (NOK)	5.181	5.191	5.490	5.490	5.490
F statistic (excl. instrument)	7,540	1,136	637	531	530

- ▶ If colleagues' road toll increases by 1 NOK (\sim 0.1 EUR) → colleagues' probability of owning a BEV increases by 0.25 pp
- If colleagues' road toll increases by 10 % (~ 0.549 NOK) → colleagues' probability of owning a BEV increases by 0.14 pp (~ 2%)

Instrument needs to satisfy the following criteria

- Relevance (first stage)
- Exclusion restriction
- Monotonicity

Conditional independence of instrument

While the exclusion restriction is inherently untestable

Can verify its plausibility by examining whether our instrument is conditionally related to important household characteristics

Conditional independence of instrument

While the exclusion restriction is inherently untestable

Can verify its plausibility by examining whether our instrument is conditionally related to important household characteristics

Figure 3: Correlation between IV (road toll colleagues) and own household wealth

Conditional independence of instrument

Figure 4: Conditional correlation between IV (road toll colleagues) and household characteristics

Preliminary results

Colleagues

Results for colleagues

Table 2: Second stage results for peer effects at work, 2017

Dep.var: BEV (yes = 1)	(1)	(2)	(3)	(4)				
Panel A: Household-level effect								
BEV share colleagues	0.4453***	0.5186***	0.4142***	0.3858**				
	(0.10411)	(0.13907)	(0.15191)	(0.15173)				
Panel B: By household mem	Panel B: By household member							
BEV share female's colleagues	0.2848***	0.2607**	0.2270**	0.2220**				
	(0.08017)	(0.10356)	(0.11107)	(0.11103)				
BEV share male's colleagues	0.1377*	0.2631***	0.1959*	0.1739*				
	(0.08177)	(0.09710)	(0.10488)	(0.10470)				
N (households)	363,447	307,444	307,444	307,444				
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark				
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark				
Work commute controls		\checkmark	\checkmark	\checkmark				
Income and wealth controls			\checkmark	\checkmark				
Other socioeconomic controls				\checkmark				
Mean BEV share	0.117	0.122	0.122	0.122				
Mean BEV share colleagues	0.063	0.065	0.065	0.065				

If the BEV share of both household members' colleagues increases by 1 pp ⇒ the household's probability of owning a BEV increases by 0.39 pp.

Results for colleagues

Table 2: Second stage results for peer effects at work, 2017

Dep.var: BEV (yes $= 1$)	(1)	(2)	(3)	(4)			
Panel A: Household-level eff							
BEV share colleagues	0.4453***	0.5186***	0.4142***	0.3858**			
	(0.10411)	(0.13907)	(0.15191)	(0.15173)			
Panel B: By household member							
BEV share female's colleagues	0.2848***	0.2607**	0.2270**	0.2220**			
	(0.08017)	(0.10356)	(0.11107)	(0.11103)			
BEV share male's colleagues	0.1377*	0.2631***	0.1959*	0.1739*			
	(0.08177)	(0.09710)	(0.10488)	(0.10470)			
N (households)	363,447	307,444	307,444	307,444			
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark			
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark			
Work commute controls		\checkmark	\checkmark	\checkmark			
Income and wealth controls			\checkmark	\checkmark			
Other socioeconomic controls				\checkmark			
Mean BEV share	0.117	0.122	0.122	0.122			
Mean BEV share colleagues	0.063	0.065	0.065	0.065			

If the BEV share of both household members' colleagues increases by 1 pp \Rightarrow the household's probability of owning a BEV increases by 0.39 pp. $_{25/32}$

Results for colleagues

Table 2: Second stage results for peer effects at work, 2017

Dep.var: BEV (yes = 1)	(1)	(2)	(3)	(4)			
Panel A: Household-level eff							
BEV share colleagues	0.4453***	0.5186***	0.4142***	0.3858**			
	(0.10411)	(0.13907)	(0.15191)	(0.15173)			
Panel B: By household member							
BEV share female's colleagues	0.2848***	0.2607**	0.2270**	0.2220**			
	(0.08017)	(0.10356)	(0.11107)	(0.11103)			
BEV share male's colleagues	0.1377*	0.2631***	0.1959*	0.1739*			
	(0.08177)	(0.09710)	(0.10488)	(0.10470)			
N (households)	363,447	307,444	307,444	307,444			
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark			
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark			
Work commute controls		\checkmark	\checkmark	\checkmark			
Income and wealth controls			\checkmark	\checkmark			
Other socioeconomic controls				\checkmark			
Mean BEV share	0.117	0.122	0.122	0.122			
Mean BEV share colleagues	0.063	0.065	0.065	0.065			

If the BEV share of both household members' colleagues increases by 1 pp \Rightarrow the household's probability of owning a BEV increases by 0.39 pp. $_{25/32}$

Family

Results for family

Table 3: Second stage results for peer effects in family networks, 2017

Dep.var: BEV (yes = 1)	(2)	(3)	(4)	(5)			
Panel A: Household-level effect							
BEV share family	0.1920***	0.2205***	0.1971***	0.1891***			
	(0.03310)	(0.05028)	(0.05373)	(0.05507)			
Panel B: Female's and male	's family						
BEV share female's family	0.1071***	0.1123***	0.1009***	0.0985**			
	(0.02871)	(0.03686)	(0.03913)	(0.03968)			
BEV share males's family	0.0979***	0.1080***	0.0959**	0.0900**			
	(0.02972)	(0.03821)	(0.04067)	(0.04145)			
N (individuals)	287,601	194,563	194,563	194,563			
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark			
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark			
Work commute controls		\checkmark	\checkmark	\checkmark			
Income and wealth controls			\checkmark	\checkmark			
Other socioeconomic controls				\checkmark			
Mean BEV share	0.121	0.126	0.126	0.126			
Mean BEV share family	0.062	0.065	0.065	0.065			
F-statistic (excl. instrument)	2,016	1,383	1,236	1,173			

If the BEV share of both household members' family increases by 1 pp ⇒ the household's probability of owning a BEV increases by 0.19 pp.
Results for family

Table 3: Second stage results for peer effects in family networks, 20	Table
--	-------

Dep.var: BEV (yes $= 1$)	(2)	(3)	(4)	(5)
Panel A: Household-level eff				
BEV share family	0.1920***	0.2205***	0.1971***	0.1891***
	(0.03310)	(0.05028)	(0.05373)	(0.05507)
Panel B: Female's and male	's family			
BEV share female's family	0.1071***	0.1123***	0.1009***	0.0985**
	(0.02871)	(0.03686)	(0.03913)	(0.03968)
BEV share males's family	0.0979***	0.1080***	0.0959**	0.0900**
,	(0.02972)	(0.03821)	(0.04067)	(0.04145)
N (individuals)	287,601	194,563	194,563	194,563
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean BEV share	0.121	0.126	0.126	0.126
Mean BEV share family	0.062	0.065	0.065	0.065
F-statistic (excl. instrument)	2,016	1,383	1,236	1,173

If the BEV share of both household members' family increases by 1 pp ⇒ the household's probability of owning a BEV increases by 0.19 pp.

Results for family

Table et decena stage results for peer cheets in family herholder, zezr	Table	3:	Second	stage	results	for	peer	effects	in	family	networks,	2017
---	-------	----	--------	-------	---------	-----	------	---------	----	--------	-----------	------

Dep.var: BEV (yes $= 1$)	(2)	(3)	(4)	(5)
Panel A: Household-level eff				
BEV share family	0.1920***	0.2205***	0.1971***	0.1891***
	(0.03310)	(0.05028)	(0.05373)	(0.05507)
Panel B: Female's and male	's family			
BEV share female's family	0.1071***	0.1123***	0.1009***	0.0985**
	(0.02871)	(0.03686)	(0.03913)	(0.03968)
BEV share males's family	0.0979***	0.1080***	0.0959**	0.0900**
,	(0.02972)	(0.03821)	(0.04067)	(0.04145)
N (individuals)	287,601	194,563	194,563	194,563
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean BEV share	0.121	0.126	0.126	0.126
Mean BEV share family	0.062	0.065	0.065	0.065
F-statistic (excl. instrument)	2,016	1,383	1,236	1,173

If the BEV share of both household members' family increases by 1 pp \Rightarrow the household's probability of owning a BEV increases by 0.19 pp.

Heterogeneous peer effects

Heterogenous peer effects at work Table

- ► A high female share at work lowers peer effects ↓
- ► A high share of university-educated workers increases peer effects ↑
- ► A higher income level among workers increases peer effects ↑
- Estimated peer effects do not vary systematically with firm size

Additional results and robustness checks

- 1. IV vs. OLS Work Family
- 2. Annual effects 2016-2019 Work Family
- 3. Panel data (2017-2019) with neighborhood×year FE Work Family
- 4. Drop households that owned a BEV in the previous year Work Family
- 5. ΔBEV as the outcome variable Work Family
- 6. Colleagues and family in the same regression Work+Family
- 7. Alternative IV (based on colleagues' spouses') Work

Charging stations do not explain peer effects at work

Table 4: Second stage results for peer effects at work, 2017

Dep.var: BEV (yes $= 1$)	(1)	(2)	(2)
BEV share colleagues	0.3858*** (0.15173)	0.4449*** (0.13786)	0.4348*** (0.13887)
Charging stations in work neighborhood			0.0027*** (0.0.00111)
Neighborhood FE (8 digit)	\checkmark		
Neighborhood FE (6 digit)		\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark
Work commute controls	\checkmark	\checkmark	\checkmark
Income and wealth controls	\checkmark	\checkmark	\checkmark
Other socioeconomic controls	\checkmark	\checkmark	\checkmark

Notes: The number of charging stations are measured at the 8 digit neighborhood level.

Charging stations do not explain peer effects at work

Table 4: Second stage results for peer effects at work, 2017

Dep.var: BEV (yes $= 1$)	(1)	(2)	(2)
BEV share colleagues	0.3858*** (0.15173)	0.4449*** (0.13786)	0.4348*** (0.13887)
Charging stations in work neighborhood			0.0027*** (0.0.00111)
Neighborhood FE (8 digit)	\checkmark		
Neighborhood FE (6 digit)		\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark
Work commute controls	\checkmark	\checkmark	\checkmark
Income and wealth controls	\checkmark	\checkmark	\checkmark
Other socioeconomic controls	\checkmark	\checkmark	\checkmark

Notes: The number of charging stations are measured at the 8 digit neighborhood level.

Policy spillovers (from peer groups' road toll)

Table 5: Reduced form results for peer effects, 2017

Dep.var: BEV (yes=1)	(1)	(2)	(3)	(4)
Road toll (NOK)	0.00351*** (0.000128)	0.00247*** (0.000188)	0.00245*** (0.000188)	0.00245*** (0.000188)
Road toll colleagues (NOK)	0.00146*** (0.000315)	0.00165*** (0.000515)	0.00120** (0.000515)	0.00110** (0.000512)
Road toll family (NOK)	0.00064*** (0.000112)	0.00079*** (0.000193)	0.00066*** (0.000193)	0.00061*** (0.000192)
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark

Total effect = direct effect (road toll) + indirect effects (road toll colleagues and road toll family)

Policy spillovers (from peer groups' road toll)

Table 5: Reduced form results for peer effects, 2017

Dep.var: BEV (yes=1)	(1)	(2)	(3)	(4)
Road toll (NOK)	0.00351*** (0.000128)	0.00247*** (0.000188)	0.00245*** (0.000188)	0.00245*** (0.000188)
Road toll colleagues (NOK)	0.00146*** (0.000315)	0.00165*** (0.000515)	0.00120** (0.000515)	0.00110** (0.000512)
Road toll family (NOK)	0.00064*** (0.000112)	0.00079*** (0.000193)	0.00066*** (0.000193)	0.00061*** (0.000192)
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark

Total effect = direct effect (road toll) + indirect effects (road toll colleagues and road toll family)

Total effect of increasing road toll by 10%

Spillovers increase the effect of the policy by $\sim 60\%$

Direct effect: $(10\% \times 5.6 \text{ NOK}) \times 0.245 \text{ pp} = 0.1372$. Spillovers from colleagues: $(10\% \times 5.2 \text{ NOK}) \times 0.110 \text{ pp} = 0.0572$. Spillovers from family: $(10\% \times 4.9 \text{ NOK}) \times 0.061 \text{ pp} = 0.0299$.

Conclusion

- Our aim has been to better understand the magnitude and nature of peer effects in BEV adoption
- We find that both colleagues and family members influence BEV adoption
 - Colleagues have a larger effect than family members
 - Peer effects at work are increasing in male share, education, and income
 - Estimated peer effects are not explained by charging stations
- \blacktriangleright We find that the presence of social spillovers increases the effect of a BEV policy by \sim 60%
- Policy relevance and contribution
 - Get better estimates (and predictions) on the effectiveness of governmental policies
 - Enhance our understanding of what influences BEV adoption

- Our aim has been to better understand the magnitude and nature of peer effects in BEV adoption
- We find that both colleagues and family members influence BEV adoption
 - Colleagues have a larger effect than family members
 - Peer effects at work are increasing in male share, education, and income
 - Estimated peer effects are not explained by charging stations
- \blacktriangleright We find that the presence of social spillovers increases the effect of a BEV policy by \sim 60%
- Policy relevance and contribution
 - Get better estimates (and predictions) on the effectiveness of governmental policies
 - Enhance our understanding of what influences BEV adoption

Our aim has been to better understand the magnitude and nature of peer effects in BEV adoption

We find that both colleagues and family members influence BEV adoption

- Colleagues have a larger effect than family members
- Peer effects at work are increasing in male share, education, and income
- Estimated peer effects are not explained by charging stations
- \blacktriangleright We find that the presence of social spillovers increases the effect of a BEV policy by \sim 60%
- Policy relevance and contribution
 - Get better estimates (and predictions) on the effectiveness of governmental policies
 - Enhance our understanding of what influences BEV adoption

Our aim has been to better understand the magnitude and nature of peer effects in BEV adoption

We find that both colleagues and family members influence BEV adoption

- Colleagues have a larger effect than family members
- Peer effects at work are increasing in male share, education, and income
- Estimated peer effects are not explained by charging stations
- \blacktriangleright We find that the presence of social spillovers increases the effect of a BEV policy by \sim 60%
- Policy relevance and contribution
 - Get better estimates (and predictions) on the effectiveness of governmental policies
 - Enhance our understanding of what influences BEV adoption

Our aim has been to better understand the magnitude and nature of peer effects in BEV adoption

We find that both colleagues and family members influence BEV adoption

- Colleagues have a larger effect than family members
- Peer effects at work are increasing in male share, education, and income
- Estimated peer effects are not explained by charging stations
- \blacktriangleright We find that the presence of social spillovers increases the effect of a BEV policy by \sim 60%
- Policy relevance and contribution
 - Get better estimates (and predictions) on the effectiveness of governmental policies
 - Enhance our understanding of what influences BEV adoption

Thank you!

e.t.isaksen@frisch.uio.no sites.google.com/site/elisabethisaksen

References I

- Allcott, H. and Kessler, J. B. (2019). The welfare effects of nudges: A case study of energy use social comparisons. American Economic Journal: Applied Economics, 11(1):236–76.
- Bailey, M., Johnston, D. M., Kuchler, T., Stroebel, J., and Wong, A. (2019). Peer effects in product adoption. Technical report, National Bureau of Economic Research.
- Bento, A., Kaffine, D., Roth, K., and Zaragoza-Watkins, M. (2014). The effects of regulation in the presence of multiple unpriced externalities: Evidence from the transportation sector. *American Economic Journal: Economic Policy*, 6(3):1–29.
- Beshears, J., Choi, J. J., Laibson, D., Madrian, B. C., and Milkman, K. L. (2015). The effect of providing peer information on retirement savings decisions. *The Journal of finance*, 70(3):1161–1201.
- Bollinger, B., Burkhardt, J., and Gillingham, K. T. (2020). Peer effects in residential water conservation: Evidence from migration. *American Economic Journal: Economic Policy*, 12(3):107–33.
- Bollinger, B. and Gillingham, K. (2012). Peer effects in the diffusion of solar photovoltaic panels. *Marketing Science*, 31(6):900–912.
- Bollinger, B., Gillingham, K., Kirkpatrick, A. J., and Sexton, S. (2019). Visibility and peer influence in durable good adoption. *Available at SSRN 3409420*.
- Brandon, A., List, J. A., Metcalfe, R. D., Price, M. K., and Rundhammer, F. (2019). Testing for crowd out in social nudges: Evidence from a natural field experiment in the market for electricity. *Proceedings of the National Academy of Sciences*, 116(12):5293–5298.

References II

- Clinton, B. C. and Steinberg, D. C. (2019). Providing the spark: Impact of financial incentives on battery electric vehicle adoption. *Journal of Environmental Economics and Management*, 98:102255.
- Cornelissen, T., Dustmann, C., and Schönberg, U. (2017). Peer effects in the workplace. American Economic Review, 107(2):425–56.
- Dahl, G. B., Løken, K. V., and Mogstad, M. (2014). Peer effects in program participation. American Economic Review, 104(7):2049–74.
- De Giorgi, G., Frederiksen, A., and Pistaferri, L. (2020). Consumption network effects. *The Review of Economic Studies*, 87(1):130–163.
- Gallagher, K. S. and Muehlegger, E. (2011). Giving green to get green? incentives and consumer adoption of hybrid vehicle technology. *Journal of Environmental Economics and management*, 61(1):1–15.
- Grinblatt, M., Keloharju, M., and Ikäheimo, S. (2008). Social influence and consumption: Evidence from the automobile purchases of neighbors. *The review of Economics and Statistics*, 90(4):735–753.
- Halse, A., Hauge, K. E., Isaksen, E. T., Johansen, B. G., and Raaum, O. (2022). Local incentives and electric vehicle adoption. *Available at SSRN 4051730*.
- Li, S., Tong, L., Xing, J., and Zhou, Y. (2017). The market for electric vehicles: Indirect network effects and policy design. *Journal of the Association of Environmental and Resource Economists*, 4(1):89–133.

References III

- Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3):531–542.
- Muehlegger, E. and Rapson, D. (2018). Subsidizing mass adoption of electric vehicles: Quasi-experimental evidence from California. NBER Working Paper 25359.
- Sexton, S. E. and Sexton, A. L. (2014). Conspicuous conservation: The prius halo and willingness to pay for environmental bona fides. *Journal of Environmental Economics and Management*, 67(3):303 – 317.

Appendix

Road toll on the work commute

Toll calculator

24. September 12:00

If no time is filled in, the calculations of the toll road fees will not take into account higher fees during rush hour. The calculator can do calculations from June 1st. 2019.

count doubtes from this. All tall face outside Osla and Darum are imported from the

Source: fjellinjen.no. *Notes:* Road toll in the paper is calculated based on the time minimizing travel route between neighborhood centroids.

Road toll

Road toll in Norway, 2016 Back

Colleagues: Naive peer effects (correlations)

Notes: Figure shows own BEV ownership for 0.025 intervals of colleagues' BEV ownership. Each circle reflects the average BEV share within a given interval. Circle size indicates the size of the population (i.e., households). Line shows linear fit.

Family: Naive peer effects (correlations)

Notes: Figure shows own BEV ownership for 0.01 intervals of family'a BEV ownership. Each circle reflects the average BEV share within a given interval. Circle size indicates the size of the population (i.e., households). Line shows linear fit.

First stage: road toll instrument (family) • Back

Notes: Figure plots residualized BEV share against residualized road toll, where we absorb 3 fixed effects (neighborhood residence, work and work spouse). Line shows polynomial fit. Histogram shows the distribution of residualized road toll.

First stage: road toll instrument (family) • Back

Dep.var: BEV share family	(1)	(2)	(3)	(4)	(5)
Road toll family (NOK)	0.00378***	0.00336***	0.00367***	0.00343***	0.00335***
	(0.000011)	(0.000010)	(0.000000)	(0.000000)	(0.000000)
N (individuals)	290,164	287,601	194,563	194,563	194,563
Neighborhood FE		\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls			\checkmark	\checkmark	\checkmark
Income and wealth controls				\checkmark	\checkmark
Other socioeconomic controls					\checkmark
Mean BEV share	0.121	0.121	0.126	0.126	0.126
Mean BEV share family	0.062	0.062	0.065	0.065	0.065
Mean road toll (NOK)	5.520	5.537	5.687	5.687	5.687
Mean road toll family (NOK)	4.939	4.943	5.054	5.054	5.054
F statistic (excl. instrument)	2,598	2,016	1,383	1,236	1,173

If road toll family increases by 1 NOK \rightarrow family's' probability of owning a BEV increases by 0.34 pp

Conditional independence of instrument (family) • Back

Figure 8: Conditional correlation between IV (road toll family) and household characteristics

Heterogeneous effects

Dep.var: BEV (yes $= 1$)	(1)	(2)	(3)	(4)
BEV share colleagues	0.4208***	0.6175***	0.1023	0.0305
	(0.15367)	(0.16412)	(0.20139)	(0.22026)
BEV share colleagues $ imes$ firm size	-0.0006			
	(0.00046)			
BEV share colleagues $ imes$ female share	`	-0.4707***		
-		(0.14649)		
BEV share colleagues \times share high-skilled		· · · ·	0.4134***	
			(0.14531)	
BEV share colleagues $ imes$ income decile			()	0.0554***
C				(0.01421)

Table 6: Heterogeneous peer effects

Peer effects colleagues: IV vs. OLS, 2016-2019

Figure 9: Effect of colleague's BEV ownership, by year

Peer effects family: IV vs. OLS, 2016-2019

Peer effects colleages: Panel data 2017-2019

Dep.var: BEV (yes = 1)	(1)	(2)	(3)	(4)
BEV share colleagues	0.5706*** (0.05825)	0.6586*** (0.08526)	0.5530*** (0.09982)	0.5366*** (0.09945)
N (households \times year FE) Neighborhood FE	1,124,710 ✓	953,064 √	953,064 √	953,064 √
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean BEV share	0.154	0.161	0.161	0.161
Mean BEV share colleagues	0.087	0.091	0.091	0.091

Table 7: Second stage results for peer effects at work, 2017–2019 Plack

If BEV share of both household members' colleagues increases by 1 pp \Rightarrow the household's probability of owning a BEV increases by 0.54 pp.

Peer effects family: Panel data 2017-2019

Dep.var: BEV (yes $= 1$)	(1)	(2)	(3)	(4)
BEV share family	0.2224***	0.2988***	0.2787***	0.2673***
	(0.02109)	(0.03421)	(0.03639)	(0.03730)
N (households $ imes$ year FE)	882,504	596,971	596,971	596,971
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean BEV share	0.160	0.166	0.166	0.166
Mean BEV share family	0.087	0.091	0.091	0.091
F statistic (excl. instrument)	4,592	2,800	2,420	2,290

Table 8: Second stage results for peer effects in family networks, 2017–2019 Back

If BEV share of both household members' family increases by 1 pp \Rightarrow the household's probability of owning a BEV increases by 0.27 pp.

Peer effects colleages: Drop households that owned a BEV the previous year

Dep.var: BEV (yes $= 1$)	(1)	(2)	(3)	(4)
BEV share colleagues	0.1999*** (0.06335)	0.2447*** (0.08898)	0.2151** (0.10244)	0.2031** (0.10315)
N (household $ imes$ year)	331,300	278,822	278,822	278,822
Neighborhood $ imes$ year FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean BEV share	0.036	0.038	0.038	0.038
Mean BEV share colleagues	0.060	0.062	0.062	0.062

Table 9: Second stage results for peer effects at work, 2017 Back

If BEV share of both household members' colleagues increases by 1 pp \Rightarrow the household's probability of adopting a BEV by next year increases by 0.2 pp.

Peer effects family: Drop households that owned a BEV the previous year

Dep.var: BEV (yes = 1)	(1)	(2)	(3)	(4)
BEV share family	0.0706*** (0.01143)	0.0825*** (0.01859)	0.0751*** (0.01976)	0.0789*** (0.02029)
N (household $ imes$ year)	771,135	518,074	518,074	518,074
Neighborhood $ imes$ year FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean BEV share	0.046	0.048	0.048	0.048
Mean BEV share family	0.078	0.081	0.081	0.081
F statistic (excl. instrument)	3,860	2,409	2,112	2,002

Table 10: Second stage results for peer effects at work, 2017–2019 Back

If BEV share of both household members' family increases by 1 pp \Rightarrow the household's probability of adopting a BEV by next year increases by 0.08 pp.

Peer effects colleages: Change in BEV ownership from t-1 to t

Δ BEV (yes = 1)	(1)	(2)	(3)	(4)
BEV share colleagues	0.1592*** (0.05520)	0.1801** (0.07582)	0.1592* (0.08684)	0.1479* (0.08732)
N (household $ imes$ year)	363,447	307,444	307,444	307,444
Neighborhood $ imes$ year FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean Δ BEV	0.033	0.035	0.035	0.035
Mean BEV share colleagues	0.063	0.065	0.065	0.065

Table 11: Second stage results for peer effects at work, 2017 Back

If BEV share of both household members' colleagues increases by 1 pp \Rightarrow the household's probability of adopting a BEV by next year increases by 0.15 pp.

Peer effects family: Change in BEV ownership from t-1 to t

Δ BEV (yes = 1)	(1)	(2)	(3)	(4)
BEV share family	0.0458*** (0.00887)	0.0527*** (0.01469)	0.0491*** (0.01566)	0.0526*** (0.01609)
	(0.0000)	(0.0100)	(0.01000)	(000000)
N (household $ imes$ year)	882,504	596,971	596,971	596,971
Neighborhood $ imes$ year FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Δ Mean BEV share	0.041	0.042	0.042	0.042
Mean BEV share family	0.087	0.091	0.091	0.091
F statistic (excl. instrument)	4,592	2,801	2,421	2,290

Table 12: Second stage results for peer effects at work, 2017–2019
Back

If BEV share of both household members' colleagues increases by 1 pp \Rightarrow the household's probability of adopting a BEV by next year increases by 0.05 pp.
Peer effects: Colleagues and family in same regression

Δ BEV (yes = 1)	(1)	(2)	(3)	(4)
BEV share colleagues	0.4921***	0.5712***	0.4760**	0.4377**
	(0.11259)	(0.18499)	(0.21005)	(0.20936)
BEV share family	0.1853***	0.2101***	0.1910***	0.1811***
	(0.03309)	(0.05192)	(0.05542)	(0.05674)
N (individuals)	287,600	180,233	180,233	180,233
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean BEV share	0.121	0.129	0.129	0.129
Mean BEV share colleagues	0.064	0.066	0.066	0.066
Mean BEV share family	0.062	0.065	0.065	0.065

Table 13: Second stage results for two peer groups (colleagues and family), 2017 Back

Results: Colleagues' spouses' road toll as IV

Δ BEV (yes = 1)	(1)	(2)	(3)	(4)
BEV share colleagues	0.7692***	0.6689***	0.5492***	0.4725***
	(0.10074)	(0.12007)	(0.14303)	(0.14419)
N (households)	362,915	307,373	307,373	307,373
Neighborhood FE	\checkmark	\checkmark	\checkmark	\checkmark
Own road toll	\checkmark	\checkmark	\checkmark	\checkmark
Work commute controls		\checkmark	\checkmark	\checkmark
Income and wealth controls			\checkmark	\checkmark
Other socioeconomic controls				\checkmark
Mean BEV share	0.117	0.122	0.122	0.122
Mean BEV share colleagues	0.063	0.065	0.065	0.065
F-statistic (excl. instrument)	980	716	579	569

Table 14: Second stage results for peer effects at work, 2017 Back

Total effect of increasing road toll by 10 NOK

Spillovers increase the effect of the policy by $\sim 60\%$

Direct effect: 10 NOK \times 45 % (share exposed to road toll) \times 0.245 pp = 1.1025. Spillovers from colleagues: 10 NOK \times 38 % \times 0.110 pp = 0.418. Spillovers from family: 10 NOK \times 37 % \times 0.061 pp = 0.222.

Back