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The objective of this paper is to analyze the link between electrification and deforesta-
tion in Côte d’Ivoire. We first checked the compatibility of night lights intensity data
with official electricity coverage statistics in Côte d’Ivoire available at the regional level.
Then, using night lights intensity panel data, we study the links between electrification
and deforestation, at a fine resolution (departments level), taking into account both spa-
tial autocorrelation and individual heterogeneity. Our results show that electrification and
deforestation rates are positively linked. Indeed, deforestation continues to gain ground
in the country alongside the vast national electrification access programs ongoing since
2011.
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I. Introduction

Deforestation rates in Côte d’Ivoire are
among the highest in the world. From over 16
million hectares of forest in the 1960s, the coun-
try now has only about 2.5 million hectares.1

In this context, in 2011 the Ivorian govern-
ment launched a vast rural electrification pro-
gram as part of its Social Program, which aims
to strengthen electricity coverage in the country
in order to fight this deforestation phenomenon,
but also to accelerate structural transformation
and create new employment opportunities in the
country. This vast program has three (3) com-
ponents. The main component remains the Na-
tional Rural Electrification Program (PRONER)
which aims to electrify all localities with more
than 500 inhabitants by the end of 2020 and
all localities in the country by 2025 (total in-
vestment cost estimated at more than 10 bil-
lion euros according to the Ivorian authorities).
The second is the Electricity for All Program
(PEPT), which aims to subsidize the cost of con-
necting low-income households to the electric-
ity network by up to 150,000 CFA francs (EUR
229). The third component is the introduction
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of a 20% reduction in the social tariff for low-
income households.

Installed capacity increased from 1,391 MW
in 2011 to 2,215 MW at the end of 2018 (Ps-
Gouv). This substantial increase in power gen-
eration, combined with efforts to improve trans-
mission and sector management, have improved
access to electricity in the country. Thus, be-
tween 2011 and 2018, the program made it pos-
sible to electrify 2,122 localities, bringing the
coverage rate to 58%, compared to 33% at the
end of 2010. On average, more than 265 local-
ities were electrified each year during this pe-
riod. However, the rate of deforestation in Côte
d’Ivoire remains quite high, being of the order
of 150,000 ha to 200,000 ha per year (Eaux et
forêts No7, December 2021). Indeed, accord-
ing to recent analyses by the Côte d’Ivoire Min-
istry of Water and Forests, changes in forest
cover, measured by satellite imagery, reflect a
clear trend towards deforestation. The Ivorian
forest fell from 7.8 million hectares in 1990 to
only 3.4 million hectares in 2015. To under-
stand the fact that deforestation is generally con-
tinuing to increase in Côte d’Ivoire despite the
country’s rapid increase in electrification, it is
necessary to recall certain characteristics of the
Ivorian environment. In fact, Côte d’Ivoire has
based its development on agricultural expansion,
which is the main cause of the loss of its forests
(Climate chance). A survey conducted by the
BNETD, ETC TERRA and RONGEAD teams
in the country’s Agro-Ecological Zones (AEZs)
confirmed the very significant contribution of
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agricultural expansion - with cocoa farming at
the top of the list - to the deforestation process
over the past 25 years (62%). Given that co-
coa is a cash crop (as opposed to a subsistence
crop), any improvement in productivity (partic-
ularly thanks to irrigation techniques made pos-
sible by access to electricity) will not necessar-
ily slow down the detrimental effect of farming
on the forests (Ly, Chakir and Cretı̀, 2021). The
main indirect factors cited in this survey were
the economic attractiveness of activities lead-
ing to deforestation (25%), population growth,
including migration (12.5%) and war/political
crises (12%). The idea is that electrified local-
ities will tend to attract more economic migrants
than similar localities without access to electric-
ity, which is likely to increase the pressure on
the forests of these electrified localities, leading
to deforestation.

The objective of this paper is to answer the
question of whether electrification is really a
mean to fight deforestation in Côte d’Ivoire as
claimed by most studies in other parts of the
world, and even in some African countries. In-
deed, for most studies, electrification reduces
the need both to expand arable farms (through
improved agricultural productivity) and to col-
lect firewood, and is therefore an effective way
to mitigate deforestation (An et al., 2002; Dube,
Musara and Chitamba, 2014; Mensah and Adu,
2015; Tanner and Johnston, 2017; Ly, Chakir
and Cretı̀, 2021; Bakehe and Hassan, 2022).
Nevertheless, some authors recognize that the
extension of the electricity network or the im-
provement in agricultural profitability generated
by electrification for example could be a source
of deforestation (Geist and Lambin, 2002; Vil-
loria, Byerlee and Stevenson, 2014). Let us also
recall that the great majority of the authors re-
porting that electrification reduces deforestation
have not in fact measured the global or overall
effect of electrification on deforestation.2 This
is the case, for example, for Mensah and Adu
(2015) who focus on the decrease in the use of
wood for cooking due to electrification in Ghana
and Ly, Chakir and Cretı̀ (2021) who focus on

2This overall effect includes how electrification operates
through the key players involved in deforestation, which include
companies (logging, mining, oil, etc.), the state (extension of
road infrastructure, construction of hydroelectric dams, urban-
ization policy, etc.) and households (agriculture, firewood col-
lection, livestock rearing, gold panning, etc.).

both the decrease in the share of households
collecting firewood and in the average size of
agricultural parcels resulting from electrification
within cohorts of households in Côte d’Ivoire.
The only authors, to our knowledge, who have
attempted a more global analysis are Tanner and
Johnston (2017). Using data on a panel of 158
countries for the years 1990, 2000 and 2010,
they show that access to electricity in rural areas
(measured by the percentage of the rural popula-
tion with access to electricity) reduces deforesta-
tion rates. However, Tanner and Johnston (2017)
believe that a caveat is necessary for any study
of this nature. They believe that using entire
countries as the unit of analysis is not ideal. In
fact, intra-country heterogeneity is the rule in the
real world, not the exception, a problem that af-
fects country-level indicators of any kind. They
point out that future work using disaggregated
data (at the level of provinces, districts, regions,
etc.) would help to clarify the relevant dynamics
within the areas of interest. This is why we have
conducted this analysis at the regional and de-
partmental level and show the impact of spatial
resolution on the results.

Indeed, in the economic literature, the role of
spatial interactions in explaining deforestation
is highly important. For Baggio and de Bar-
ros (2021), spatial interactions are to be con-
sidered when analysing forest conversion and
land use change. This is why it is impera-
tive to always control for spatial interactions in
these types of analysis, as this could have an ef-
fect on the different relationships and improve
the predictive power of the model (Maddison,
2006; Chakir and Lungarska, 2017; Choumert,
Motel and Dakpo, 2013). In the same vein,
Robalino and Pfaff, 2012 consider that spatial
interactions are relevant to understand the phe-
nomenon of deforestation. Finally, Robalino
and Pfaff (2012) show that in Costa Rica, de-
forestation in neighbouring localities (regardless
of political boundaries) significantly increases
the probability of deforestation in a given lo-
cality. However, the interaction between locali-
ties is not necessarily dependent on geographical
proximity. In fact, even if a locality is far away
from the major agglomerations, if it is well in-
tegrated into the transport network, it is obvious
that the demand for forest goods (such as wood
and firewood) and agricultural goods (pressure
on land) is quite high for this locality compared
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to similar localities that would not be as well
served by road and rail transport infrastructures.
This results in accelerated deforestation (Asher,
Garg and Novosad, 2020). Some authors, such
as Ferreira and Coelho (2015), even think that
the deforestation process begins with the open-
ing of roads that encourage the collection of
wood and the clearing of the forest for agricul-
ture or pasture. Empirical analyses by authors
such as Newman, McLaren and Wilson (2014)
or Kleinschroth et al. (2019) confirm that the
phenomenon of deforestation is more important
on the shelf of roads. Moreover, according to
Alves (2002), the deforestation of the 1990s in
Brazil occurred within a radius of 100 km of
the main roads and highways in the Amazon and
Barber et al. (2014) showed that 95% of the for-
est loss was located within a radius of 5.5 km on
roads and 1 km on rivers. It should also be noted
that deforestation is also affected by geographi-
cal and climatic conditions, particularly through
its impact on the costs of building and maintain-
ing transport infrastructure. For example, high
levels of precipitation can make runoff difficult
and reduce the potential for agricultural produc-
tion, reducing the profitability margin, and act-
ing as a barrier to deforestation (Hargrave and
Kis-Katos, 2013). Baggio and de Barros (2021)
also considered some geographical variables are
for control purposes. For them, this aims to im-
prove the specification of the model and avoid
the problem of omitted variables. Finally, to il-
lustrate the application of spatial analysis in the
literature, we can cite for example Amin et al.
(2019) who use a dynamic spatial model that
takes into account both location bias and spatial
interaction effects between municipalities and
allows the impact of different types of protected
areas (integral protected areas, sustainable pro-
tected areas and indigenous lands) on deforesta-
tion to be assessed. For them, the effectiveness
of protected areas on deforestation is open to de-
bate because they are not randomly distributed.
Neglecting for instance this location bias could
lead to an overestimation of the impact of pro-
tected areas on deforestation.

Our contribution to the existing literature is
fourfold. First, we check the concordance of the
night lights intensity data (satellite data) with the
official data on progress with electrification in
Côte d’Ivoire (data available only at the regional
level). Indeed, satellite data, due to their avail-

ability at different spatial scales, are frequently
used to approximate economic activity (GDP),
population density, or electrification to compen-
sate for the frequent absence of official data on
these variables at the sub-national scale in devel-
oping countries (Dai, Hu and Zhao, 2017; Ku-
mar et al., 2019; Sutton et al., 2001 Sutton et al.,
2007; Beyer, Franco-Bedoya and Galdo, 2021).
We show that the use of the electricity cover-
age rate data provided by the Ivorian authori-
ties and the night lights intensity data provide
the same results (no effect) at the regional scale.
This means that there is a concordance of the
official data and the night lights intensity data
at regional scale. Second, we test the hypothe-
sis according to which the existence of spatial
interaction also depends on the chosen aggre-
gation level. Indeed, we show that aggregated
data at the regional level (N=33) show no spa-
tial autocorrelation. However, at the department
level (N=108), the spatial lag model is the best
model according to statistical tests. Third, we
investigate whether conducting the analysis at
a lower level of aggregation (108 departments)
while taking into account both spatial effects
and unobservable individual and temporal spe-
cific effects could help to improve the specifica-
tion of the model. Finally, we analyse the global
effect of electrification on deforestation at the
country’s regional and departmental levels in or-
der to be able to draw parallels with the results
obtained by Tanner and Johnston (2017) using a
panel of developing countries. Contrary to Tan-
ner and Johnston (2017), our empirical results
suggest that electrification increases deforesta-
tion in line with the situation on the ground in
Côte d’Ivoire.

The rest of the paper is as follow: data and
variables are presented in the section II, the sec-
tion III presents the choice for the best spatial
specification, section IV presents our estima-
tions and results, and the section V concludes.

II. Data and variables

This section includes respectively the vari-
ables description and summary statistics, the
concordance between night lights data and of-
ficial electrification coverage rate data, and our
exploratory spatial data analysis.
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A. Variables description and summary statistics

Table 1 summarises our main data sources
with the different descriptions. These are mainly
satellite data such as forest cover data, night
lights intensity data, weather data, conflict data,
economic activity data and demographic data.

We will mainly exploit data on forest cover in
2000 (>20% trees) and deforestation 2001-2018
provided by Hansen et al. (2013). In order to es-
timate the electrification rate by region and de-
partment, we will exploit high resolution satel-
lite data on night lights intensity provided by the
Earth Observation Group, NOAA National Cen-
ters for Environmental Information (NCEI).

We also retain the control variables that are
commonly used in studies undertaken on the
evolution of the deforestation rate. To mea-
sure the effect of economic factors, we use GDP
(by region, by department). As a reminder, in
the economic literature, the debate on the re-
lationship between deforestation and economic
growth is summarised by the existence of an in-
verted U-shaped relationship called the ”envi-
ronmental Kuznets curve”.3

Also, several authors have identified large
and/or growing populations as a causal factor of
deforestation (Celentano et al., 2012; Tacconi,
2011). This is why demography also requires
special attention in this analysis, since popula-
tion is considered to be one of the main causes
of environmental degradation, and therefore of
deforestation. In developing countries with for-
est resources, the population migrates when ac-
cess to land is improved and converts forests
into arable land (Bakehe and Hassan, 2022).
Since the pioneering work of Cropper and Grif-
fiths (1994), several econometric analyses have
shown that population density increases defor-
estation in developing countries. In this study,
the potential role of demographic factors on de-
forestation is taken into account through the
population density per locality (region or depart-
ment). Demographic data on population density
by locality are available from NASA’s Socioeco-
nomic Data and Applications Center (SEDAC).4

Our control variables also include weather
(temperature and precipitation), forest cover,

3Here we will not test for the existence of an environmental
Kuznets curve.

4NOAA (National Oceanic and Atmospheric Administra-
tion)

conflict and market access (distance to a ma-
jor city). The weather and market access vari-
ables are mainly used to control agricultural ac-
tivity. The forest cover variable is used to cap-
ture the role of forest abundance. Finally, the
conflict variable also remains very important be-
cause in case of conflict in a locality, two effects
may emerge: a decrease in deforestation due to
emigration or an increase in deforestation due to
the violation of certain protected areas (parks,
reserves, etc.).

In Table 2, on average and at the regional
scale, the AGR analysis suggests that deforesta-
tion as well as electrification have steadily in-
creased over the period 2011-2018 (19% forest
loss on average and 36% increase in lights inten-
sity which is a proxy for electrification).5 Sim-
ilarly, we have an increase in average tempera-
ture over the same period, while rainfall has con-
tinued to decline. The forest cover is about 34%
on average per region. However, when we ob-
serve the minimum and maximum values for all
of these quantities, there is strong heterogene-
ity between the regions, as Tanner and John-
ston (2017) pointed out in the context of the
limit of an analysis by country that would ignore
this phenomenon of intra-country heterogeneity.
Also, we can see that electrification continues to
grow by looking at either the official data (row
3) or the lights intensity data (row 2). However,
the difference in the magnitude of AGR is due
to changes in the measurement of night lights
intensity data over the period, which makes the
rate larger for this data source.

The trend in Table 3 (departmental scale) is al-
most the same as described in Table 2 (regional
scale). The fundamental difference is that we do
not have official data on forest cover at the de-
partmental level and that we have more hetero-
geneity at this departmental level as shown by
the St. Dev. values and the differences between
the minimum and maximum values. Keeping
only the regional level of disaggregation there-
fore runs the risk of ignoring these huge intra-
regional heterogeneities. Therefore it is impor-
tant for us to check more or less the concordance
between the official data and the regional night
lights intensity data in order to be able to use
the departmental night lights intensity data as a
proxy for electrification in Côte d’Ivoire.

5AGR = (Annual) Average Growth Rate
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TABLE 1—MAIN DATA DESCRIPTION

Data Description Source/Authors

VIIRS Nighttime Lights
(Radiance)

Yearly VIIRS day night band nighttime lights data
(without stray light correction). Christopher, Chi et al.

(2017)
DMSP-OLS Nighttime
Lights (digital number
0-63)

The lights from cities, towns, and other sites with
persistent lighting, including gas flares. Ephemeral
events, such as fires have been discarded.

NOAA National Geophys-
ical Data Center

Evolution of the coverage
rate 2011 - 2018

Evolution of the number of electrified localities and
the coverage rate by region from 2011 to 2018.

Ministry of Petroleum,
Energy and Renewable
Energies (MPEER)

Precipitation (Yearly Av-
erage)

Average monthly precipitation per year in millime-
ters. Created using UDel Precipitation dataset
(v5.01)

University of Delaware

Air Temperature (Yearly
Average)

Average monthly air temperature per year in de-
grees Celsius. Created using UDel Air Temperature
dataset (v5.01)

University of Delaware

Tree canopy cover for
year 2000 (percent forest
cover)

Tree cover in the year 2000, defined as canopy clo-
sure for all vegetation taller than 5m in height. In
the range 0-100.

Hansen et al. (2013)

Year of gross forest cover
loss event (pixels of forest
loss)

Forest loss during the period 2000-2018, defined as
a stand-replacement disturbance, or a change from
a forest to non-forest state.

Hansen et al. (2013)

Population Density (per-
sons per square kilometer)

Population density (UN Adjusted values) from
Gridded Population of the World v4. GPWv4 de-
picts the density of human population across the
globe.

Warszawski et al. (2017)

Gross Domestic Product
(millions of dollars)

Map of total economic activity, including both for-
mal and informal economic activity for 2006; cre-
ated from nighttime lights and LandScan population
grid.

Ghosh et al. (2010)

ACLED Conflict Events
(Africa)

Number of conflict event counts per 0.1 decimal de-
gree grid cell using ACLED (Armed Conflict Loca-
tion & Event Data Project) v3.

Raleigh et al. (2010)

Travel time to major cities
(time in minutes)

Estimated travel time (in minutes) to the nearest city
of 50,000 or more people in year 2000. Nelson (2008)
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TABLE 2—DESCRIPTIVE STATISTICS (33 REGIONS)

Statistics N Mean St. Dev. Min Max

Forest loss AGR 2011-2018 33 18.817 12.148 −3.199 41.209
Night lights AGR 2011-2018 33 35.568 29.398 0.693 131.205
Elec. coverage AGR 2011-2018 33 9.880 9.682 0.148 36.138
Average temperature AGR 2011-2017 33 0.212 0.304 0 1
Average precipitation AGR 2011-2017 33 −1.329 2.000 −7.597 3.521
Population density AGR 2010-2020 33 2.768 0.864 1.372 4.741
Percent forest cover 33 33.848 12.947 13 60
Gross Domestic Product 33 1,196 1,637 44 9,329
ACLED Conflict Events 33 82.788 38.654 18 186
Travel time to major cities 33 260.364 126.197 93 637

TABLE 3—DESCRIPTIVE STATISTICS (108 DEPARTMENTS)

Statistics N Mean St. Dev. Min Max

Forest loss AGR 2011-2018 108 22.367 19.045 −12.446 104.179
Night lights AGR 2011-2018 108 46.138 49.453 −5.579 262.188
Average temperature AGR 2011-2017 108 0.254 0.308 0 1
Average precipitation AGR 2011-2017 108 −1.401 2.180 −9.059 3.789
Population density AGR 2010-2020 108 2.803 1.817 0.000 11.514
Percent forest cover 108 34.546 13.777 8 67
Gross Domestic Product 108 365.750 945.970 10 9,330
ACLED Conflict Events 108 26.111 18.043 4 123
Travel time to major cities 108 258.648 131.132 85 858

TABLE 4—DESCRIPTIVE STATISTICS (PANEL OF 108 DEPARTMENTS OVER 2001-2017)

Statistics N × T Mean St. Dev. Min Max

Forest loss 1,836 23,496 31,444 0 307,665
Night lights 1,836 3,237 5,957 0 81,497
Average temperature 1,836 26.687 0.786 24 28
Average precipitation 1,836 111.377 24.952 56 210
Population density 1,836 80.366 219.565 7 2,312
Percent forest cover 1,836 34.546 13.717 8 67
Gross Domestic Product 1,836 365.750 941.837 10 9,330
ACLED Conflict Events 1,836 26.111 17.964 4 123
Travel time to major cities 1,836 258.648 130.559 85 858



WORKING PAPER ELECTRIFICATION AND DEFORESTATION 7

Table 4 summarises our variables for the panel
analysis at department level over the period
2001-2017. The Forest loss variable is in pix-
els, while the Night lights variable is in radi-
ance, thus not relevant to interpret in an eco-
nomic point of view. The average temperature
per department over this period is 27 degrees
Celsius on average with a minimum temperature
of 24 degrees Celsius and a maximum tempera-
ture of 28 degrees Celsius. The average rainfall
is 111 millimetres per year. The average density
is 80 people per km2. The departments have an
average GDP of 366 million USD and there is an
average of 26 conflicts per department, this char-
acterises the fact that the period has been partic-
ularly turbulent in the country (post-election cri-
sis, conflicts between rebel forces from the north
and pro-governmental forces, etc.).

B. Concordance between night lights data and
official coverage rate data

The first map in Figure 1 indicates that there
is a strong spatial concentration between night
lights intensity data and electricity coverage (of-
ficial data).6 The regions that have experi-
enced rapid increases in coverage are those that
predominantly have above-average increases in
lights intensity (solid triangles). This proves, in
somewhat, the concordance between these two
data sources. With the exception of some north-
ern regions on the border with Mali and Burkina
Faso (area under threat from extremist groups,
thus decreasing population due to emigration
and thus less pressure on forests) and some cen-
tral regions where a kind of negative spatial cor-
relation can be noticed, the second map in Fig-
ure 1 also seems to show a trend of positive spa-
tial correlation between electrification and the
highest deforestation rates.

Moreover, the table A1 (Appendix A) presents
the results of the a-spatial model by compar-
ing the coefficients (sign and significance) of the
night lights intensity data and the official cover-
age rate data. As already shown in Table 2, at the
regional scale, the average annual growth rates
are increasing for both variables over the period
2011 to 2018. The two rates do not evolve with
the same magnitude because there has been a

6Our Local Indicators of Spatial Association (LISA) clus-
tering maps also highlight the similar trends (see Figure A1 in
Appendix A)

change in the scale of measurement over the pe-
riod for the night lights intensity variable. This
is also reflected in the difference in magnitudes
of the two coefficients expressed in this table.
However, both coefficients remain insignificant
in this model and keep the same positive sign.

Finally, the Figure 2 represents the adminis-
trative division of the national territory into 33
regions. This figure also represents the average
annual growth rates (2011-2018) of our main
variables at the regional level. By analysing
the last two maps, we can see that the variables
night lights intensity and coverage rate reflect
the same phenomenon of spatial polarisation (or
spatial heterogeneity) in favour of localities in
the north of the country. Indeed, these localities
have long remained on the sidelines of the coun-
try’s development process, but as soon as the
current president (originating from the north of
the country) took the country’s presidency, mas-
sive investments were undertaken in these local-
ities. This once again demonstrates the reliabil-
ity of the night lights intensity data. The first
map shows a strong concentration of high defor-
estation rates in the east and west of the country
(spatial autocorrelation).

Even if the reliability of night lights intensity
data is sometimes questioned, at least in the case
of Côte d’Ivoire, our results show that it seem
to be suitable as a proxy of electrification in the
country at the regional level. Given the unavail-
ability of official data on the evolution of elec-
trification at disaggregated levels (notably at the
departmental level) in developing countries, and
more particularly in Côte d’Ivoire, we will use
these data as a proxy for electrification at a lower
aggregation level (departmental level) in the rest
of this analysis.

C. Exploratory spatial data analysis

Let us now define the spatial interaction ma-
trix. It is obvious that in order to implement a
spatial econometric model, the construction of
a weight matrix W that best describes the spatial
interactions between observations (localities, re-
gions and departments in our case) is essential.
A neighbourhood matrix W must indeed respect
several technical constraints to ensure in particu-
lar the invertible character of the matrix, and the
identification of the models (Lee, 2004; Elhorst,
2010). According to Insee (2018), the usual con-
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Solid triangles indicate values over the mean of Night light AGR 2011-2018.
Source: MPEER, NOAA
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Solid triangles indicate values over the mean of Forest loss AGR 2011-2018.
Source: MPEER, Hansen et al, 2013

FIGURE 1. Spatial concentration of high and low values
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FIGURE 2. Average growth rates (AGR) for the main variables at the regional and departmental scale

tiguity matrix respects these two different con-
straints. Only one shared border point fulfils the
condition of contiguity (queen=TRUE). Other-
wise, more than one shared point would be re-
quired or simply a shared boundary line. Fig-
ure 3 summarises the neighbourhood networks
of the country’s regions and departments.

Then, before opting for a potential spatial
model, it is essential to ensure the existence of
spatial interaction between the observations, in
particular by means of graphic maps and statis-

tical tests (the main one being Moran’s I). For
the quantitative variables, Moran’s index (IW ) is
often preferred to Geary’s because of its greater
general stability (Upton and Fingleton, 1985):

(1) IW =
∑

n
i=1 ∑

n
j=1 wi j (Yi− Ȳ )(Yj− Ȳ )

∑
n
i=1 (Yi− Ȳ )2

H0 : IW = 0→ No spatial autocorrelation.
H1 : IW 6= 0 → Spatial autocorrelation (posi-

tive or negative depending on the sign of IW ).
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33 Regions 108 Departments

FIGURE 3. Neighbourhood network using Contiguity (queen) matrix

In order to carry out the Moran test, it is neces-
sary to specify the distribution for each of our
main variables in the absence of spatial autocor-
relation (Insee, 2018). In this context, statistical
inference is generally carried out by consider-
ing either the Normality Hypothesis (each of the
values of the variable is the result of an indepen-
dent draw from the normal distribution specific
to each geographical area on which this variable
is measured), or the Randomisation Hypothesis
(the estimate of the statistic obtained from the
data is compared with the distribution of that ob-
tained by randomly reordering the data).

The Moran diagrams (Figure 4) allow a quick
reading of the spatial interaction at both the re-
gional and departmental levels for each of our
main variables.

Through tables 5 and 6 (but also the tables in
appendix B), we show that whatever the defi-
nition of the neighbourhood or the scale of ag-
gregation chosen, the spatial autocorrelation of
electrification and deforestation is positive and
significant. The strength of the spatial autocor-
relation does not change enough following the
type of neighbourhood chosen, but varies drasti-
cally for the Forest loss variable following the
aggregation level. Indeed, the significance of
the test remains weak at the level of the 33 re-
gions for this variable. Nevertheless, it does not
present any ambiguity when a lower level of ag-

gregation is adopted (108 departments).

III. Choice of the best spatial specification

From a statistical point of view, many analy-
ses (linear regressions in particular) are based on
the hypothesis of independence of the observa-
tions of a variable. When a variable is spatially
autocorrelated, the independence assumption is
no longer respected, thus calling into question
the validity of the assumptions on which these
analyses are based. Thus, as highlighted in the
introduction section, the analysis of the defor-
estation phenomenon requires the consideration
of spatial interactions between different locali-
ties (regions and departments in Côte d’Ivoire
in our case). In order to take into account the
relative location and interactions of localities in
Côte d’Ivoire, we will opt for spatial economet-
ric models. Spatial econometrics is certainly
a recent discipline, but it is already the sub-
ject of interesting applications, particularly in
the field of environmental economics. To illus-
trate this, we can, for example, recall its applica-
tion in land use models by Chakir and Lungarska
(2017). Indeed, in their comparison of different
econometric models of land use, the two authors
manage to show that taking into account spatial
effects significantly improves the quality of the
predictions of the different models studied.

Spatial econometric models extend linear re-
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FIGURE 4. Moran plot using Contiguity (queen) matrix at the regional and departmental scale

TABLE 5—MORAN TEST FOR OUR MAIN VARIABLES USING CONTIGUITY (QUEEN) WEIGHT MATRIX - REGIONS

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.243 -0.031 0.011 2.59 0.0048
Forest loss (randomisation) 0.243 -0.031 0.012 2.55 0.0054
Night lights (normality) 0.498 -0.031 0.011 5 2.9e-07
Night lights (randomisation) 0.498 -0.031 0.011 5.15 1.3e-07
Elec. coverage (normality) 0.680 -0.031 0.011 6.72 <1e-08
Elec. coverage (randomisation) 0.680 -0.031 0.011 6.72 <1e-08

TABLE 6—MORAN TEST FOR OUR MAIN VARIABLES USING CONTIGUITY (QUEEN) WEIGHT MATRIX - DEPARTMENTS

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.4583 -0.0093 0.0036 7.78 <1e-08
Forest loss (randomisation) 0.4583 -0.0093 0.0035 7.89 <1e-08
Night lights (normality) 0.5654 -0.0093 0.0036 9.56 <1e-08
Night lights (randomisation) 0.5654 -0.0093 0.0034 9.91 <1e-08

gressions by taking into account the non inde-
pendence of observations across space.7 In other
words, these models may contain spatial lags
of the outcome variable and/or spatial lags of
the covariates, and/or spatial lags of error terms.
Formally, the model which groups together all
these interactions is the model of Manski (1993)

7Spatial Autoregressive Models Reference Manual (Stata,
Release 17)

or GNS:

(2) D = ρWD+Xβ +WXθ +u
u = λWu+ ε

where, D represents deforestation (or forest
loss), X represents a set of explanatory vari-
ables (electrification, population density, precip-
itation, temperature, forest cover, gross domes-
tic product, conflicts, travel time to major cities
or access to markets). The model of Manski
(1993) is not identifiable (Insee, 2018). To make



WORKING PAPER ELECTRIFICATION AND DEFORESTATION 11

the model identifiable, the literature proposes to
impose restrictions on the different parameters
of the model such as:

θ = 0, λ = 0, ρ 6= 0→ SAR
θ = 0, λ 6= 0, ρ = 0→ SEM
θ 6= 0, λ = 0, ρ = 0→ SLX
θ 6= 0, λ = 0, ρ 6= 0→ SDM (SAR+SLX)
θ 6= 0, λ 6= 0, ρ = 0→ SDEM (SLX+SEM)
θ = 0, λ 6= 0, ρ 6= 0→ SAC (SAR+SEM)

After having established the existence of spatial
interactions between our localities in the sub-
section II.C, we proceed now to the choice of
the best spatial specification. To do this, first,
we will opt for the bottom-up approach pro-
posed by Florax, Folmer and Rey (2003) which
consists in starting with the a-spatial model us-
ing the Lagrange multiplier (LM) tests proposed
by Anselin et al. (1996) to decide between the
different spatial specifications and the a-spatial
model. These tests are also robust to the pres-
ence of other types of spatial interactions (be-
yond the specifications of the SAR or SEM mod-
els). This approach is based on the residuals
of the a-spatial model and has the advantage
of being computationally inexpensive. Florax,
Folmer and Rey (2003) have also shown, using
simulations, that this procedure is the most ef-
ficient in the case the true model is a SAR or a
SEM.

From the constrained or a-spatial model (OLS
in our case), we use the statistics of the LM test
to guide the selection of the correct specifica-
tion. According to Anselin (2013), if neither of
the two tests (LMerr and LMlag) is significant,
then the model to adopt is the a-spatial model
(OLS). On the other hand, if LMerr is the only
one of the two tests to be significant, then we opt
for a SEM. Otherwise, if LMlag is the only one
of the two tests to be significant, then the SAR
is chosen. However, if both are significant, the
robust versions (RLMerr and RLMlag) are used
to discriminate between them.

Through Table C1 (Appendix C), we conclude
that the best spatial specification remains the a-
spatial model (OLS) when considering the ad-
ministrative division of the 33 regions. This is
the case regardless of whether the night lights
intensity data or the official electricity cover-
age data provided by the country’s authorities
are used as the variable of interest. However,
when considering the administrative division of
the 108 departments, it appears that the best spa-

tial specification to use is the SAR or Spatial Lag
Model (SLM) specification. 8

Indeed, the administrative division of a terri-
tory as vast as Côte d’Ivoire (with its 322,462
km2) into only 33 regions did not allow the
identification of spatial interaction phenomena.
On the other hand, when we move to a much
lower level of aggregation (108 departments),
we realise the need to opt for a spatial model
that takes into account the strong heterogene-
ity between the different entities. Spatial di-
vision therefore has an influence on the results
of statistical processing or modelling, as em-
phasised by Openshaw (1984) through the con-
cept of MAUP (Modifiable Areal Unit Problem).
More precisely, the irregular shapes and limits
of administrative grids which do not necessar-
ily reflect the reality of the spatial distributions
studied are an obstacle to the comparability of
unequally subdivided spatial units. According
to Openshaw (1984), the MAUP is a combina-
tion of two distinct but related problems. The
first is the problem of scale, which is related to a
variation in information generated when a set of
spatial features is aggregated to form fewer and
larger units for the purposes of analysis or for
data availability issues. The second is the prob-
lem of aggregation (or zoning), which is related
to a change in the diversity of information gener-
ated by different possible aggregation schemes
at the same scale. This effect is characteristic
of administrative (particularly electoral) bound-
aries and is in addition to the scale effect.

The fact that we have the SAR model as our
best spatial model means that deforestation in a
given locality is determined jointly with that of
neighbouring localities.

This implies that: (i) the global spillover ef-
fects: on average, the value of deforestation for

8The Top-down approach (starting with the Spatial Durbin
Model or SDM) due to LeSage and Pace (2009) also gives the
SAR as the best spatial specification in this application (see Ap-
pendix D). Elhorst (2010)’s ”mixed” approach, which is a com-
bination of the top-down and bottom-up approaches, is usually
conducted in case of different results. In our case, the result
is the same. Thus, this approach also would lead us to a SAR
specification. Finally, we also used the two-way comparison ap-
proach (see Appendix E). In this last approach, we could see that
SAC prevails over GNS. Then, SDM and SDEM also outperform
GNS, and SLX. OLS also prevails over SLX. However, SEM is
preferred to SDM, SDEM and OLS. However, SAC prevails over
SEM. Finally, SAR prevails over SAC, SDM and OLS. We con-
clude for all these approaches that the SAR is the best model
adapted to our data.
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a locality is not only explained by the values of
the explanatory variables for that locality, but
also by those associated with all localities (spa-
tial multiplier effect); and (ii) a global spatial
diffusion effect: a random shock in a locality
affects the value of deforestation of this local-
ity as well as those of other localities. In our
case this means that deforestation in a particu-
lar locality depends on the electrification rate of
other localities. The interaction effects among
the error terms do not require a theoretical model
but instead, are consistent with a situation where
determinants of deforestation omitted from the
model are spatially autocorrelated, or with a sit-
uation where unobserved shocks follow a spatial
pattern.

IV. Estimation and results interpretation

In this section, we analyse the overall effect of
electrification on deforestation at the departmen-
tal level taking into account only spatial speci-
ficities, and then consider spatial effects and un-
observable individual and temporal specific ef-
fects in order to correctly identify the overall ef-
fect of electrification on deforestation

A. Spatial analysis at departmental level

Table 7 presents the results of the a-spatial
model (OLS) and all the possible spatial speci-
fications (SEM, SAR, SDM, SAC, SLX, SDEM
and GNS) at the scale of the country’s depart-
ments. The analysis of the AIC confirms our
choice of the SAR model (AIC=899.681 being
the lowest). However, the AIC of the SAR
model is very close to that of the SAC model
(AIC=901.679). Moreover, when we focus on
the coefficients for these two models, we no-
tice that they are almost identical. Also, these
two coefficients have the highest electrification
effects on deforestation (0.036) except for the
linear model (which has to be compared to the
marginal effects that we will calculate later). On
closer inspection, we notice that λ̂ = 0 for the
SAC model, which simply reduces it to the SAR
model. Finally, we also notice that LM test for
residual autocorrelation is not significant for the
SAR model. Thus, the possible risk of an omit-
ted relevant variable is eliminated. As we de-
fined also the SAR as the composition of SEM
and SLX, this absence of spatial interaction ef-
fects in error terms lead to the fact that our SAR

model implies finally that: (i) deforestation in
a given locality depends on the electrification
rate of other localities; (ii) there are the global
spillover effects (on average, the value of the de-
forestation for a locality is not only explained
by the level of the electrification for that local-
ity, but also by those associated with all locali-
ties, spatial multiplier effect); and (iii) there is a
global spatial diffusion effect (a random shock
in a locality affects not only the value of the de-
forestation of this locality but also has an effect
on the values of the deforestation of other local-
ities).

Following LeSage and Pace (2009), the effect
of the explanatory variables on the dependent
variable is decomposed into direct and indirect
effects. The direct effect of electrification on de-
forestation measures the effect of a change in the
rate of electrification (improvement of electrifi-
cation for example) of a given department on de-
forestation in this same department. The indirect
effect measures the effect of a change in elec-
trification in one department on deforestation in
all other departments. In other words, indirect
effects are global spillovers because they occur
in all departments and are not necessarily lim-
ited to neighbourhood departments. However,
these indirect effects relate more to the neigh-
bourhood of a given department because they
decrease with distance.

Table 8 presents the direct and indirect ef-
fects of electrification on deforestation from the
SAR specification at departmental level in Côte
d’Ivoire. The empirical confidence intervals are
obtained using 200 simulations from the empiri-
cal distribution (Table 7, column 4). Only the di-
rect effects of conflict and rainfall are significant
and negative. Indeed, areas that experienced
conflict, notably during the post-election crisis
or during armed attacks in the north of the coun-
try (border with Burkina Faso and Mali) expe-
rienced population displacement to other areas.
This would have reduced the demographic pres-
sure on the forests in these areas. With regard
to rainfall, Hargrave and Kis-Katos (2013) recall
that a high level of rainfall can make runoff diffi-
cult and reduce the potential for agricultural pro-
duction, thus reducing the profitability margin,
and acting as a barrier to deforestation. Thus,
only the precipitation variable would have a sig-
nificant indirect effect. We get the same sign
with the direct effect of this variable because
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TABLE 7—REGRESSION RESULTS

OLS SEM SAR SDM SAC SLX SDEM GNS

Night lights intensity AGR 2011-2018 0.059 0.025 0.036 −0.010 0.036 −0.011 0.004 −0.000
(0.045) (0.045) (0.036) (0.050) (0.037) (0.062) (0.048) (0.049)

Average temperature AGR 2011-2017 2.261 2.491 2.167 1.750 2.172 1.475 0.210 0.962
(5.643) (4.719) (4.535) (4.635) (4.544) (5.819) (4.989) (4.943)

Average precipitation AGR 2011-2017 −4.050∗∗∗ −3.136∗∗∗ −2.032∗∗∗ 1.176 −2.036∗∗ 0.341 1.459 1.429
(0.813) (1.163) (0.720) (2.089) (1.000) (2.622) (2.051) (2.095)

Percent forest cover in 2000 0.360∗∗ 0.270 0.187 0.123 0.178 0.256 0.093 0.085
(0.147) (0.189) (0.121) (0.274) (0.134) (0.344) (0.254) (0.261)

Population density AGR 2010-2020 0.306 0.718 0.694 0.589 0.694 0.190 0.558 0.592
(1.025) (0.808) (0.824) (0.867) (0.825) (1.088) (0.960) (0.964)

Gross Domestic Product −0.002 −0.001 −0.001 −0.001 −0.001 −0.002 −0.001 −0.001
(0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

ACLED Conflict Events −0.166 −0.167∗∗ −0.153∗ −0.139 −0.153∗ −0.159 −0.132 −0.133
(0.102) (0.085) (0.082) (0.087) (0.083) (0.109) (0.095) (0.093)

Travel time to major cities −0.017 −0.012 −0.010 −0.008 −0.010 −0.017 −0.003 −0.003
(0.017) (0.018) (0.014) (0.020) (0.014) (0.024) (0.019) (0.019)

ρ̂ 0.613∗∗∗ 0.577∗∗∗ 0.612∗∗∗ 0.134
(0.089) (0.097) (0.223) (0.569)

λ̂ 0.608∗∗∗ 0.003 0.626∗∗∗ 0.530
(0.094) (0.374) (0.091) (0.421)

lag.Night lights intensity AGR 2011-2018 0.050 0.096 0.115 0.102
(0.074) (0.093) (0.093) (0.100)

lag.Average temperature AGR 2011-2017 −3.254 −1.629 −9.027 −7.316
(9.268) (11.636) (12.158) (11.590)

lag.Average precipitation AGR 2011-2017 −3.959 −4.950 −7.598∗∗∗ −6.749∗

(2.661) (3.283) (2.921) (3.775)
lag.Percent forest cover in 2000 0.102 0.145 0.536 0.440

(0.351) (0.436) (0.394) (0.454)
lag.Population density AGR 2010-2020 −2.289 −2.531 −2.309 −2.237

(2.004) (2.516) (2.385) (2.330)
lag.Gross Domestic Product −0.003 −0.007∗ −0.001 −0.001

(0.003) (0.004) (0.004) (0.004)
lag.ACLED Conflict Events −0.041 −0.146 −0.128 −0.103

(0.164) (0.204) (0.228) (0.239)
lag.Travel time to major cities 0.011 0.011 −0.020 −0.014

(0.031) (0.038) (0.038) (0.039)
Constant 9.548 12.474 2.596 7.060 2.613 18.413 7.510 7.321

(7.116) (8.222) (5.809) (12.057) (6.273) (15.093) (18.614) (17.993)

Observations 108 108 108 108 108 108 108 108
Adjusted R2 0.229 0.239
Akaike Inf. Crit. 903.858 899.681 910.975 901.679 910.67 912.618
Moran’s Test 0.000 0.000
LM-Error Test 0.000 0.000
LM-Lag Test 0.000 0.000
Robust LM-Error Test 0.509 0.019
Robust LM-Lag Test 0.021 0.002
Common Factor Test 0.352
LM test for residual auto. 0.991 0.627
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE 8—EFFECT MEASURES, SPATIAL AUTOREGRESSIVE MODEL

Direct Indirect Total

Night lights intensity AGR 2011-2018 0.0396 0.053 0.092
Average temperature AGR 2011-2017 2.409 3.198 5.607
Average precipitation AGR 2011-2017 -2.259∗∗∗ -2.998∗∗ -5.258∗∗∗

Percent forest cover in 2000 0.208 0.276 0.483
Population density AGR 2010-2020 0.771 1.023 1.795
Gross Domestic Product -0.001 -0.002 -0.003
ACLED Conflict Events -0.171∗ -0.226 -0.397
Travel time to major cities -0.011 -0.015 -0.026
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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neighbouring departments would certainly have
similar levels of precipitation.

In spite of taking into account spatial effects
through the SAR model, we notice that the over-
all effect of electrification on deforestation at the
department level remains positive but not signif-
icant, contrary to what we had expected through
the statistical analysis of the data. This leads us
to include specific unobservable effects (individ-
ual and temporal) using the panel dimension.

B. Inclusion of unobservable individual and time
specific effects

For Amin et al. (2019), taking into account in-
dividual and temporal dimensions allows a con-
siderable gain of information linked to the ex-
ploitation of the double dimension of the data
(control of the presence of unobservable hetero-
geneity), gives rise to a size of the samples gen-
erally higher (improvement of the precision of
the estimates) and allows the modelling of dy-
namic relations. Indeed, even if spatial cross-
sectional models allow spatial dependence ef-
fects to be captured, panel data also allow some
form of unobservable heterogeneity to be con-
trolled for (individual and time specific effects).

As in the case of cross-sectional data, taking
into account spatial effects in panel data also
requires specification tests. The first specifica-
tion test is the Hausman test for spatial models.
This test makes it possible to arbitrate between
a fixed effects (FE) model and a random effects
(RE) model. If the null hypothesis of this test
is not rejected, the two estimators GLS (random
effects model) and Within (fixed effects model)
will converge, but only the GLS will be consis-
tent.9 Otherwise, the GLS estimator will not
be convergent, while the Within estimator will
remain convergent. The result of the Hausman
test for spatial models (Appendix F) leads to the
non-rejection of the null hypothesis of the ab-
sence of correlation between the individual ef-
fects and the explanatory variables. We there-
fore opt for a random effects model in the rest of
this empirical analysis.

The specification tests for the spatial effects
are then carried out in order to select the most
appropriate specification for taking account of
spatial dependence. The most commonly used

9GLS = Generalized Least Squares

spatial autocorrelation specification tests for
panel data are based on the Lagrange multiplier
test. They make it possible to test for the ab-
sence of each of the spatial terms without hav-
ing to estimate the unconstrained model (Insee,
2018). These two tests are very often completed
by their robust version to the alternative form
of taking into account the spatial autocorrelation
(RLMlag or RLMlag). The results of all the tests
(Appendix F) guide us to estimate a random ef-
fects model with a SAR process.

Table 9 summarises the results of the model
estimation with spatial autocorrelation taken
into account using a SAR model (Baltagi error
term specification). The calculation of direct,
indirect and total effects followed the approach
of Piras (2014). Electrification (night lights in-
tensity), percentage of forest cover and conflicts
appear to have significant effects on deforesta-
tion. Contrary to the results of Tanner and John-
ston (2017) which showed, using data from 158
countries, that improving access to electricity in
rural areas reduces the rate of deforestation, our
main results suggest that electrification broadly
increases deforestation. In other words, the im-
provement of the electrification rate reduces the
forest cover at the scale of the departments of
Côte d’Ivoire. This result appears after succes-
sively taking into account spatial effects and spe-
cific individual and temporal unobservable ef-
fects.

The direct positive effect of electrification
on deforestation could be explained by several
mechanisms. First, when a locality is connected
to the national electricity grid, this creates new
employment opportunities and could contribute
to the well-being of that locality. This will there-
fore lead to an inflow of migrants to that locality
and the installation of new industrial actors for
example (thus more pressure on the forests in
terms of habitats, firewood collection, timber ex-
ploitation or mining, etc.). Furthermore, as men-
tioned in the introduction, there is the case of the
very important weight of cash crops (notably co-
coa and rubber) in Côte d’Ivoire. Therefore, any
improvement in the productivity of these cash
crops (notably via irrigation techniques made
possible by access to electricity) will not nec-
essarily have an effect on the slowing down of
farming to the detriment of forests, and could
even increase the expansion of agricultural land
to the detriment of forests (Ly, Chakir and Cretı̀,
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TABLE 9—EFFECT MEASURES, ML PANEL WITH SPATIAL LAG, RANDOM EFFECTS, BALTAGI SPATIAL ERROR CORRELATION

Direct Indirect Total

Night lights intensity 0.425∗∗∗ -0.095∗∗ 0.331∗∗∗

Average temperature 372.124 -82.794 289.330
Average precipitation 93.766 -20.862 72.904
Percent forest cover 769.228∗∗∗ -171.146∗∗∗ 598.082∗∗∗

Population density -27.525 6.124 -21.401
Gross Domestic Product 5.452 -1.213 4.239
ACLED Conflict Events 605.629∗∗∗ -134.747∗∗∗ 470.882∗∗∗

Travel time to major cities -7.398 1.646 -5.752
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2021). This is known as Jevons’ paradox.10

The indirect effect of electrification on defor-
estation is rather negative and strongly signifi-
cant even if its magnitude is much smaller than
that found with the direct effect. This could
be explained by the fact that an increase in de-
forestation resulting from electrification that is
significant enough in the surrounding localities
could reduce the internal pressure on the forests
(less migrants and more immigrants). Moreover,
deforestation increases with the abundance of
the forest resource. Also, the fact of surrounding
oneself with territories rich in forest resources
relatively reduces the pressure on the forest of a
given locality. Finally, conflicts increase defor-
estation because during conflicts even protected
areas are affected. For example, in their analysis
of the dynamics of the designated forest of Haut-
Sassandra (Côte d’Ivoire) in a post-armed con-
flict situation, Sangne et al. (2015) found that the
area, once considered one of the country’s best
protected designated forests, was experiencing
several intrusions into its historical boundaries
as a result of the country’s military-political cri-
sis that lasted from 2002 to 2011. Numerous
pioneering fronts were opened, leading to the
clearance of several thousand hectares of natu-
ral forest (formerly controlled by rebel armed
groups from the north) followed by the planta-
tion of cash crops (mainly cocoa).

10The Jevons paradox implies that since technical progress
improves the efficiency of the use of a resource, the total con-
sumption of that resource may increase rather than decrease.

V. Conclusion

The objective of our study was mainly to
highlight the importance of spatial resolution
and spatial interaction in studying the links be-
tween electrification and deforestation in Cote
d’Ivoire. First, we tested the reliability of the
night lights intensity data and showed that its is
comparable at the regional level to the official
data on electricity coverage provided by the Ivo-
rian authorities. Second, we tested for the exis-
tence of spatial autocorrelation in deforestation
both at the regional and departmental level. Re-
sults show that aggregating the data at regional
level hides the spatial autocorrelation observed
at the departmental level. Third, we run spa-
tial statistical tests and show that SAR model
is the best specification both in cross-sectional
and panel data model. Finally, we showed that
taking into account both spatial auto-correlation
and individual heterogeneity in the spatial panel
framework allows to show that electrification
have an overall positive impact on deforestation
with a positive direct impact and negative indi-
rect impact of neighboring areas.

Our results suggest that electrification in-
creases overall deforestation in Côte d’Ivoire.
Nevertheless, as highlighted in many analyses,
electrification could have partially favorable ef-
fects on some deforestation factors (e.g. reduced
wood collection, reduced need to expand arable
farms for subsistence crops etc.). In addition,
electrification is a powerful tool for reducing
poverty. Electrification also accelerates struc-
tural transformation and is a source of job cre-
ation in most developing countries. While in-
creasing access to electricity, Ivorian authorities
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should ensure that forest protection brigades are
put in place, not only to enforce protected area
designations, but also to create a barrier against
pressure on forests all over the country.
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J-G Ongono-Olinga, and Sonia Schwartz.
2019. “Neighborhood effects in the Brazil-
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tion in Côte d’Ivoire: a Pseudo-Panel ap-
proach.” 2, 14

Maddison, David. 2006. “Environmental
Kuznets curves: A spatial econometric
approach.” Journal of Environmental Eco-
nomics and management, 51(2): 218–230.
2

Manski, Charles F. 1993. “Identification of
endogenous social effects: The reflection
problem.” The review of economic studies,
60(3): 531–542. 10

Mensah, Justice Tei, and George Adu. 2015.
“An empirical analysis of household energy
choice in Ghana.” Renewable and Sustainable
Energy Reviews, 51: 1402–1411. 2

Nelson, Andrew. 2008. “Estimated travel time
to the nearest city of 50,000 or more people
in year 2000.” Ispra, Italy. 5

Newman, Minke E, Kurt P McLaren, and By-
ron S Wilson. 2014. “Assessing deforestation
and fragmentation in a tropical moist forest
over 68 years; the impact of roads and legal



18 DECEMBER 2022

protection in the Cockpit Country, Jamaica.”
Forest Ecology and Management, 315: 138–
152. 3

Openshaw, Stan. 1984. “The modifiable areal
unit problem, CATMOG 38.” 11

Piras, Gianfranco. 2014. “Impact estimates for
static spatial panel data models in R.” Letters
in Spatial and Resource Sciences, 7(3): 213–
223. 14

Raleigh, Clionadh, Andrew Linke, Håvard
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APPENDIX A: CONCORDANCE BETWEEN NIGHT LIGHTS DATA AND OFFICIAL DATA

Official data Night lights data

FIGURE A1. Local Indicators of Spatial Association (LISA)

TABLE A1—FOREST LOSS AGR 2011-2018 AS DEPENDENT VARIABLE, OLS REGRESSION RESULTS

(1) (2)

Night lights intensity AGR 2011-2018 0.088
(0.148)

Electricity coverage AGR 2011-2018 0.332
(0.419)

Average temperature AGR 2011-2017 −4.962 −5.120
(7.255) (7.190)

Average precipitation AGR 2011-2017 −3.080∗ −3.416∗∗

(1.506) (1.330)
Percent forest cover in 2000 0.338 0.392

(0.222) (0.244)
Population density AGR 2010-2020 1.463 1.569

(3.139) (3.017)
Gross Domestic Product −0.002 −0.002

(0.001) (0.001)
ACLED Conflict Events −0.045 −0.068

(0.074) (0.079)
Travel time to major cities −0.039 −0.035

(0.030) (0.023)
Constant 14.033 11.906

(14.558) (14.581)

Observations 33 33
R2 0.356 0.363
Adjusted R2 0.141 0.150
Residual Std. Error (df = 24) 11.259 11.198
F Statistic (df = 8; 24) 1.657 1.708
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

APPENDIX B: MORAN’S I TESTS USING ALTERNATIVES NEIGHBOURHOOD MATRIX

B1. Moran I for Regions
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TABLE B1—MORAN TEST FOR OUR MAIN VARIABLES USING CONTIGUITY (GABRIEL) WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.289 -0.031 0.014 2.68 0.0036
Forest loss (randomisation) 0.289 -0.031 0.015 2.64 0.0041
Night lights (normality) 0.513 -0.031 0.014 4.57 2.5e-06
Night lights (randomisation) 0.513 -0.031 0.013 4.71 1.2e-06
Elec. coverage (normality) 0.698 -0.031 0.014 6.12 <1e-08
Elec. coverage (randomisation) 0.698 -0.031 0.014 6.12 <1e-08

TABLE B2—MORAN TEST FOR OUR MAIN VARIABLES USING DISTANCE (WITH K=1) WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.093 -0.031 0.016 0.977 0.16
Forest loss (randomisation) 0.093 -0.031 0.017 0.962 0.17
Night lights (normality) 0.550 -0.031 0.016 4.56 2.5e-06
Night lights (randomisation) 0.550 -0.031 0.015 4.7 1.3e-06
Elec. coverage (normality) 0.631 -0.031 0.016 5.19 1e-07
Elec. coverage (randomisation) 0.631 -0.031 0.016 5.19 1e-07

TABLE B3—MORAN TEST FOR OUR MAIN VARIABLES USING DISTANCE (WITH K=5) WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.0048 -0.0312 0.0028 0.676 0.25
Forest loss (randomisation) 0.0048 -0.0312 0.0029 0.666 0.25
Night lights (normality) 0.3659 -0.0312 0.0028 7.45 <1e-08
Night lights (randomisation) 0.3659 -0.0312 0.0027 7.67 <1e-08
Elec. coverage (normality) 0.4901 -0.0312 0.0028 9.78 <1e-08
Elec. coverage (randomisation) 0.4901 -0.0312 0.0028 9.78 <1e-08

TABLE B4—MORAN TEST FOR OUR MAIN VARIABLES USING TRIANGULATION WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.2180 -0.0312 0.0096 2.54 0.0055
Forest loss (randomisation) 0.2180 -0.0312 0.0099 2.5 0.0062
Night lights (normality) 0.4761 -0.0312 0.0096 5.17 1.2e-07
Night lights (randomisation) 0.4761 -0.0312 0.0091 5.33 4.9e-08
Elec. coverage (normality) 0.6622 -0.0312 0.0096 7.07 <1e-08
Elec. coverage (randomisation) 0.6622 -0.0312 0.0096 7.07 <1e-08
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TABLE B5—MORAN TEST FOR OUR MAIN VARIABLES USING 2-NEAREST NEIGHBOURS WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.166 -0.031 0.023 1.3 0.097
Forest loss (randomisation) 0.166 -0.031 0.024 1.28 0.1
Night lights (normality) 0.573 -0.031 0.023 3.97 3.6e-05
Night lights (randomisation) 0.573 -0.031 0.022 4.09 2.1e-05
Elec. coverage (normality) 0.685 -0.031 0.023 4.71 1.3e-06
Elec. coverage (randomisation) 0.685 -0.031 0.023 4.71 1.3e-06

TABLE B6—MORAN TEST FOR OUR MAIN VARIABLES USING 4-NEAREST NEIGHBOURS WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.227 -0.031 0.011 2.41 0.008
Forest loss (randomisation) 0.227 -0.031 0.012 2.37 0.0089
Night lights (normality) 0.514 -0.031 0.011 5.1 1.7e-07
Night lights (randomisation) 0.514 -0.031 0.011 5.25 7.5e-08
Elec. coverage (normality) 0.679 -0.031 0.011 6.63 <1e-08
Elec. coverage (randomisation) 0.679 -0.031 0.011 6.63 <1e-08

TABLE B7—MORAN TEST FOR OUR MAIN VARIABLES USING 6-NEAREST NEIGHBOURS WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.2308 -0.0312 0.0071 3.12 0.00091
Forest loss (randomisation) 0.2308 -0.0312 0.0073 3.07 0.0011
Night lights (normality) 0.4250 -0.0312 0.0071 5.43 2.9e-08
Night lights (randomisation) 0.4250 -0.0312 0.0067 5.59 1.1e-08
Elec. coverage (normality) 0.5899 -0.0312 0.0071 7.39 <1e-08
Elec. coverage (randomisation) 0.5899 -0.0312 0.0071 7.39 <1e-08
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B2. Moran I for departments

TABLE B8—MORAN TEST FOR OUR MAIN VARIABLES USING CONTIGUITY (GABRIEL) WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.5054 -0.0093 0.0043 7.84 <1e-08
Forest loss (randomisation) 0.5054 -0.0093 0.0042 7.95 <1e-08
Night lights (normality) 0.5411 -0.0093 0.0043 8.38 <1e-08
Night lights (randomisation) 0.5411 -0.0093 0.0040 8.69 <1e-08

TABLE B9—MORAN TEST FOR OUR MAIN VARIABLES USING DISTANCE (WITH K=1) WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.4313 -0.0093 0.0036 7.36 <1e-08
Forest loss (randomisation) 0.4313 -0.0093 0.0035 7.47 <1e-08
Night lights (normality) 0.6239 -0.0093 0.0036 10.6 <1e-08
Night lights (randomisation) 0.6239 -0.0093 0.0033 11 <1e-08

TABLE B10—MORAN TEST FOR OUR MAIN VARIABLES USING DISTANCE (WITH K=5) WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.25706 -0.00935 0.00087 9.04 <1e-08
Forest loss (randomisation) 0.25706 -0.00935 0.00084 9.17 <1e-08
Night lights (normality) 0.41993 -0.00935 0.00087 14.6 <1e-08
Night lights (randomisation) 0.41993 -0.00935 0.00081 15.1 <1e-08

TABLE B11—MORAN TEST FOR OUR MAIN VARIABLES USING TRIANGULATION WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.4215 -0.0093 0.0031 7.78 <1e-08
Forest loss (randomisation) 0.4215 -0.0093 0.0030 7.89 <1e-08
Night lights (normality) 0.4448 -0.0093 0.0031 8.2 <1e-08
Night lights (randomisation) 0.4448 -0.0093 0.0028 8.51 <1e-08
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TABLE B12—MORAN TEST FOR OUR MAIN VARIABLES USING 2-NEAREST NEIGHBOURS WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.6252 -0.0093 0.0078 7.2 <1e-08
Forest loss (randomisation) 0.6252 -0.0093 0.0076 7.3 <1e-08
Night lights (normality) 0.6418 -0.0093 0.0078 7.38 <1e-08
Night lights (randomisation) 0.6418 -0.0093 0.0072 7.66 <1e-08

TABLE B13—MORAN TEST FOR OUR MAIN VARIABLES USING 4-NEAREST NEIGHBOURS WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.4931 -0.0093 0.0040 7.9 <1e-08
Forest loss (randomisation) 0.4931 -0.0093 0.0039 8.02 <1e-08
Night lights (normality) 0.5111 -0.0093 0.0040 8.19 <1e-08
Night lights (randomisation) 0.5111 -0.0093 0.0038 8.49 <1e-08

TABLE B14—MORAN TEST FOR OUR MAIN VARIABLES USING 6-NEAREST NEIGHBOURS WEIGHT MATRIX

Moran I stat E(I) var(I) st. deviation p-value

Forest loss (normality) 0.4211 -0.0093 0.0026 8.39 <1e-08
Forest loss (randomisation) 0.4211 -0.0093 0.0026 8.51 <1e-08
Night lights (normality) 0.4457 -0.0093 0.0026 8.87 <1e-08
Night lights (randomisation) 0.4457 -0.0093 0.0024 9.2 <1e-08
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APPENDIX C: BOTTOM-UP APPROACH (FLORAX, FOLMER AND REY, 2003)

TABLE C1—LAGRANGE MULTIPLIER DIAGNOSTICS FOR SPATIAL DEPENDENCE

Obs: 33 / X = Night light Obs: 33 / X = Elec. Coverage Obs: 108 / X = Night light

Tests statistic df p.value statistic df p.value statistic df p.value

LMerr 2.040606 1 0.1531 2.39356 1 0.1218 24.95165 1 5.879e-07
LMlag 1.578866 1 0.2089 1.57515 1 0.2095 29.80226 1 4.784e-08
RLMerr 0.542341 1 0.4615 1.15133 1 0.2833 0.43516 1 0.5095
RLMlag 0.080601 1 0.7765 0.33292 1 0.5639 5.28577 1 0.0215

APPENDIX D: TOP-DOWN APPROACH (LESAGE AND PACE, 2009)

TABLE D1—LIKELIHOOD RATIO TESTS

First stage Second stage

Tests Statistics df p-value Statistics df p-value

LRθ 4.7053 8 0.7886
LRρ 22.013 1 2.709e-06 27.833 1 1.323e-07
LRλ 8.8829 8 0.3523

APPENDIX E: TWO-WAY COMPARISON APPROACH

TABLE E1—RESULTS OF LIKELIHOOD RATIO TESTS FOR SPATIAL MODELS

statistic df p-value

OLS versus SEM (H0 : λ = 0) 24 1 1.2e-06
OLS versus SAR (H0 : ρ = 0) 28 1 1.3e-07
OLS versus SLX (H0 : θ = 0) 11 8 0.23
SAR versus SAC (H0 : λ = 0) 8e-05 1 0.99
SAR versus SDM (H0 : θ = 0) 4.7 8 0.79
SEM versus SAC (H0 : ρ = 0) 4.2 1 0.041
SEM versus SDM (H0 : θ =−ρβ ) 8.9 8 0.35
SEM versus SDEM (H0 : θ = 0) 9.2 8 0.33
SLX versus SDM (H0 : ρ = 0) 22 1 2.7e-06
SLX versus SDEM (H0 : λ = 0) 22 1 2.3e-06
SDM versus GNS (H0 : λ = 0) 0.35 1 0.55
SDEM versus GNS (H0 : ρ = 0) 0.048 1 0.83
SAC versus GNS (H0 : θ = 0) 5.1 8 0.75
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APPENDIX F: PANEL SPECIFICATION TESTS

TABLE F1—SPECIFICATION TESTS UNDER PANEL MODELS

Tests name Statistics Alternative hypothesis

Hausman test for spatial
models

chisq = 23.715, df = 8, p-value = 0.9829 one model is inconsistent

LM test for spatial lag de-
pendence

LM = 912.28, df = 1, p-value < 2.2e-16 spatial lag dependence

LM test for spatial error
dependence

LM = 889.81, df = 1, p-value < 2.2e-16 spatial error dependence

Robust LM test for spatial
lag dependence

LM = 33.226, df = 1, p-value = 8.203e-09 spatial lag dependence

Robust LM test for spatial
error dependence

LM = 10.754, df = 1, p-value = 0.001041 spatial error dependence


