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Abstract

One of the most challenging aspects of (environmental) policy impact evaluation
studies is the construction of credible counterfactuals for causal inference. In
this paper, we leverage a method that does not require the creation of bench-
marks or the identification of external comparable control units to evaluate the
effectiveness of the first three phases of the European Union Emissions Trading
System (EU ETS) (2005-2019) in reducing power sector fossil fuel CO2 emis-
sions across 24 EU ETS Member States. Considering the beginning of each
trading period (phase) as a policy intervention, the paper adopts a Bayesian
structural time series (BSTS) modeling framework alongside a set of contem-
poraneous predictors related to power sector emissions to build counterfactual
estimates of emissions for each post-intervention period and analyze the pol-
icy implementation effect by comparing actual emissions with counterfactual
estimates. The results indicate a statistically significant emissions reduction in
the second and third phases. The dominance of the power sector within the
ETS since its inception emphasizes the importance of our findings in advancing
emissions reduction objectives.

Keywords: The EU ETS, Fossil Fuel CO2 Emissions, Climate Variables,
Predictive Modeling, Spatio-temporal Analysis, Counterfactual Inference

1. Introduction

Carbon dioxide (CO2) emissions resulting from fossil fuel combustion consti-
tute approximately 80% of all human-driven greenhouse gas (GHG) emissions in
the European Union, as reported by the statistical office of the European Union.
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1 These emissions originate from the burning of non-renewable energy sources
like coal, natural gas, and petroleum products, primarily used for electricity
and heat generation, transportation, and industrial manufacturing. While the
emission intensity of electricity generation varies considerably among European
Union Member States due to differences in national electricity mixes, power gen-
eration continues to be the predominant source of CO2 emissions (Ang, 2007;
Apergis & Payne, 2009; Iwata et al., 2012; Shafiei & Salim, 2014; European
Environment Agency, 2020).

Economists have long held that carbon pricing through cap-and-trade sys-
tems is one of the most cost-effective ways to decarbonize the economy (Meckling
et al., 2017). As the pioneering and second biggest carbon market across the
globe (preceded by China’s Emissions Trading Scheme, introduced in 2021), the
European Union Emissions Trading System (abbreviated as the EU ETS) is the
keystone of the European Union’s policy to fight climate change, and its cen-
tral tool for reducing CO2 and other greenhouse gas emissions under the 1997
Kyoto Protocol’s commitment periods (European Comission, 2021). The EU
ETS covers emissions from electricity and heat generation, along with the most
energy-intensive industrial sectors, collectively representing up to 70% of emis-
sions in each member state (Ellerman & Buchner, 2008). Since its inception, the
scheme has split into a number of trading periods or phases, each characterized
by specific features and legislation. The first (pilot) trading period started in
January 2005 and ended in December 2007. The second phase extended across
a period of five years from the beginning of 2008 to the end of 2012. The third
phase started in January of 2013 and continued until the end of December 2020.
At the time of writing this paper, the system was in its fourth phase, which
started in January 2021 and was planned to continue until the end of December
2030.

A growing body of literature has examined the effectiveness of different
phases of the EU ETS in reducing CO2 emissions at sector, firm, country, and
EU levels, but with no decisive results (see Laing et al., 2013). While some
works have evaluated the effectiveness of the EU ETS over time periods cov-
ering more than one phase, extensive large-scale empirical assessments of the
effectiveness of all the first three phases remain scarce. Given that the power
sector stands as the predominant source of EU emissions, a comprehensive un-
derstanding of the specific effectiveness of the EU ETS in reducing emissions
within this sector is crucial. This insight is of great importance not only for
assessing the overall success of this trading system but also for informing and
shaping future climate policies. The primary objective of this study is to address
a major gap in the understanding of the impact of the EU ETS implementa-
tion on CO2 emissions in the power sector. Specifically, the research aims to
evaluate the effectiveness of the first three phases of the EU ETS in reducing
monthly power sector fossil fuel CO2 emissions across the ETS zone. Leveraging
a cutting-edge counterfactual-based causal modeling technique, we establish an

1https://ec.europa.eu/eurostat
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innovative methodological framework to facilitate a comparison between actual
monthly power sector fossil fuel CO2 emissions from 2005 to 2020 under the EU
ETS with a counterfactual scenario where the scheme did not exist. By using
a comprehensive set of unaffected-by-policy variables and indices as predictors,
we isolate the true impact of the EU ETS, offering a fresh perspective on its
effectiveness in curbing emissions in the power sector.

There are several important areas where this research makes an original
contribution to the existing literature on the EU ETS.

Firstly, it provides a notable methodological contribution to evaluating the
environmental effectiveness of the EU ETS, by leveraging an advanced and
credible counterfactual modeling framework that eliminates the need for exter-
nal control units and enabling causal inference without relying on comparisons
with external benchmarks. This approach is particularly useful for analyzing the
effectiveness of emissions reduction policies in the power sector, where, unlike
other sectors, finding appropriate control units or establishing benchmarks for
comparison is extremely challenging (if not impossible), due to its unique char-
acteristics and complexities. The study’s specific focus on the power sector sets
it apart from some recent works that explore other sectors within the EU ETS
(see for example Colmer et al., 2023). The power sector’s dominance since the
scheme’s inception, its critical role in EU ETS emissions, and its vulnerability
to climate variations make it a particularly important area of investigation.

Secondly, the study evaluates the temporal evolution of the EU ETS emis-
sions reduction impact in the power sector, not only over the course of each
phase (at an intra-annual time scale) but also cumulatively, from a transitional
standpoint from the first phase to the third phase. This objective is of utmost
importance, as any effectiveness analysis of the EU ETS should not only fo-
cus on assessing the overall effectiveness of the scheme in individual phases but
also on whether its main objective (emissions reduction) has been increasingly
improved across phases.

Thirdly, from a methodological standpoint, the introduction of novel indices
for capturing the effect of (weather-related) renewable electricity generation
on EU ETS emissions in the power sector, as well as the potential overlap of
climate and energy policies and measures across the EU ETS zone based on
the latest available data, is a major contribution. These indices can be easily
adapted for use in a wide range of analyses concerning renewable energy and
policy impacts within the extensive literature on climate change and energy
economics. The inclusion of these indices has enabled us to isolate the effects
of overlapping mechanisms and measures and controlling for additional effects
to the maximum extent possible.

Finally, to the best of the authors’ knowledge, no previous study has exam-
ined the effectiveness of the EU ETS in reducing CO2 emissions from fossil fuels
in the power sector throughout all completed trading periods (2005-2020). This
EU-level sectoral analysis serves as a valuable addition to existing studies, which
have primarily focused on specific sub-periods within the first three phases of
the EU ETS.

The structure of this paper is organized as follows: Section 2 offers an
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overview of existing research on the effectiveness evaluation of the EU ETS, es-
tablishing the groundwork for the methodology employed in constructing coun-
terfactual emissions within the proposed framework. The research setting, data,
and methodology of the empirical analysis are detailed in Section 3, with the
presentation of results in Section 4. The paper concludes by discussing limita-
tions and suggesting avenues for future research in Sections 5 and 6.

2. Background and Literature Review

When it comes to the effectiveness assessment of carbon markets, carbon
price is regularly the touchstone of choice where low prices are, explicitly or
implicitly, associated with ineffectiveness (Bayer & Aklin, 2020). Carbon price
provides an economic signal to emitters of CO2 and enables them to decide
whether to lower their emissions, or continue emitting and paying for their
emissions. This emphasis on carbon price as a pivotal metric has led to a
plethora of studies focusing on the structural determinants of carbon prices–
ranging from weather conditions and electricity demand to energy prices and
fuel switching, recognizing the vital role these determinants play in shaping
market dynamics and influencing decisions related to emission reduction (see
among others (Eslahi & Mazza, 2023)).

While understanding the drivers behind emissions allowance prices is crucial
for interpreting market responsiveness and gauging the implicit effectiveness of
the scheme, directly evaluating the outcomes of emission reduction measures
provides a more tangible measure of the environmental impact. This direct as-
sessment serves to validate (or challenge) the effectiveness of the market mecha-
nism, and provides insights into the real-world implications of emissions trading.
Indeed, studies have demonstrated that carbon abatement remains justifiable
even in the presence of low market prices, highlighting the potential efficacy
of the EU ETS in reducing emissions under such conditions (Bayer & Aklin,
2020). In this context, the primary measure for evaluating the performance
of any emissions trading scheme, including the EU ETS, should be the actual
extent of emissions reduction (Ellerman et al., 2016). Consequently, the ef-
fectiveness assessment of the EU ETS should not solely rely on market prices
but should instead center on an evaluation of whether the policy has resulted
in a reduction in emissions (Bayer & Aklin, 2020). Methodologically, this as-
sessment poses challenges, as it necessitates comparing actual emissions under
the EU ETS with counterfactual emissions that would have occurred if the EU
ETS had not been implemented (see Bayer & Aklin, 2020; Grubb et al., 2012;
Ellerman et al., 2010; Helm & Sprinz, 2000). Given the unobservable nature of
counterfactual emissions, their estimation becomes imperative for a comprehen-
sive evaluation of the EU ETS’s impact on emissions reduction.

Causal inference based on counterfactuals is well-established in impact eval-
uation studies in economics (see among others Ellerman & Buchner, 2008; De-
clercq et al., 2011; Anderson & Di Maria, 2011). One of the most challenging
aspects of any counterfactual analysis lies in the selection of appropriate com-
parison groups unaffected by the corresponding policy intervention. Broadly,
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counterfactual approaches to causal inference fall into three categories: exper-
imental (e.g., randomized controlled trials), non-experimental (e.g., logically-
constructed counterfactuals), and quasi-experimental (e.g., difference in dif-
ferences, (propensity score-based) matching, instrumental variables estimation,
regression discontinuity, and statistically-created counterfactuals) research de-
signs. Previous studies have examined the effectiveness of the EU ETS in re-
ducing carbon emissions in various sectors across different temporal and spa-
tial scopes, utilizing a range of non-experimental and quasi-experimental ap-
proaches. For a detailed summary of these studies, please refer to Table A.4 in
Appendix A.

On the one hand, non-experimental studies in this context, specifically those
relying on baselines or logically-constructed counterfactuals, mainly suffer from
potential bias in and imperfect comparability of data across Europe (Ellerman
& Buchner, 2008). On the other hand, classical quasi-experimental methods
such as (propensity score-based) matching and difference in differences are ei-
ther reliant upon strong assumptions, such as the conditional independence
assumption, or limited in terms of explaining the time evolution of the inter-
vention effect (Brodersen et al., 2015). From these premises, it could be argued
that within the specific context of evaluating the effectiveness of the EU ETS,
counterfactual designs created through statistical methods hold an advantage
over other quasi-experimental approaches. An effective statistical technique for
creating counterfactuals is to amalgamate a collection of potential predictor se-
ries into a synthetic control (Brodersen et al., 2015; Abadie et al., 2010; Abadie
& Gardeazabal, 2003).

Perhaps the most relevant research of this type within the framework of the
effectiveness evaluation of the EU ETS is the study by Bayer & Aklin (2020),
which considers the start of the first and second trading periods (2005 and
2008) as points of policy intervention and utilizes emissions series from non-
ETS sectors (those not covered by the EU ETS) across the European Union as
synthetic control group units to estimate counterfactual emissions. Naturally,
using non-ETS sectors (or firms) as a comparison or control group relies on
the fundamental assumption that such sectors (or firms) are not subject to
any parallel carbon constraint regulations that may have been implemented
simultaneously with the EU ETS (see Jaraite-Kažukauske & Di Maria, 2016).
However, this assumption may not hold true for all non-participant sectors (or
firms) at the European level. For instance, the French Environment and Energy
Management Agency (ADEME)2 reports that in conjunction with the EU ETS
as a union policy, France has concurrently implemented domestic mechanisms
to reduce emissions from sectors not covered by the emissions trading system.
More importantly, since 2008, most sectors not included in the EU ETS have
been targeted by the Effort Sharing regulation set by the European Union,3,
with the aim of achieving a 30% emissions reduction target in the affected

2https://bilans-ges.ademe.fr/
3https://ec.europa.eu/clima/policies/effort_en
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sectors by 2030. On another note, as the EU ETS already includes the biggest
emitters, finding suitable non-ETS counterparts in terms of absolute emissions
across Europe is unlikely (Jaraite-Kažukauske & Di Maria, 2016). Therefore,
at least in theory, non-ETS sectors (or firms) may not be the most appropriate
control units in a European-scale study.

Since its inception, the inclusion of the power sector in the EU ETS has
been integral to its design and implementation. Unlike other sectors, the power
sector’s participation in emissions trading cannot be benchmarked against his-
torical data or compared directly with analogous industries outside the EU ETS
framework. The unique nature of power generation installations, coupled with
their significant representation within the EU ETS (Ahamada & Kirat, 2015),
further complicates efforts to establish comparable control units for conducting
comprehensive assessments of emission reductions. Given the challenges associ-
ated with finding suitable counterparts outside the EU ETS, traditional methods
reliant on identifying comparable units for comparison may prove impractical.
Therefore, alternative methodologies that do not rely on finding direct coun-
terparts (like the one employed in the present study) become imperative for
accurately evaluating the impact and effectiveness of the EU ETS in the power
sector.

To address the challenge of identifying appropriate control units for estab-
lishing counterfactual power sector fossil fuel CO2 emissions, we adopt an ap-
proach that, rather than relying on external units (such as non-ETS sectors)
as control groups, relies on a set of variables and novel indices that remain
unaffected by the EU ETS and that can be used as predictors of such emis-
sions. These chosen contemporaneous predictors serve as a basis for estimating
counterfactual emissions during each phase of the EU ETS, providing a more
internally consistent and robust framework for analysis. Considering the begin-
ning of each phase as a policy intervention, a Bayesian counterfactual time series
model is trained during the pre-intervention period to establish the relationship
between the target series (power sector fossil fuel CO2 emissions) and a range
of contemporaneous predictors at both the country and European levels. Sub-
sequently, the model is applied to the post-intervention period to predict the
outcome. These predictions provide the counterfactual estimates of power sec-
tor fossil fuel CO2 emissions. In contrast to methods proposed by Abadie et al.
(2010) and Abadie & Gardeazabal (2003), the approach adopted here avoids
imposing restrictions, such as convexity conditions, on how potential predictor
series should be combined. Instead, it exclusively leverages predictors based
on their ability to predict the outcome of interest during the pre-intervention
period. The predictive modeling framework employed in this study should be
distinguished from a forecasting scheme. Unlike forecasting, which uses histor-
ical data to predict a variable’s future values within a specific time horizon,
the proposed framework focuses on learning how emissions can be explained as
a function of contemporaneous predictors to make counterfactual predictions.
It then capitalizes on disparities between actual and counterfactual emissions,
which are interpreted as the casual impact of the EU ETS on fossil fuel CO2

emissions.
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While the EU ETS is a unified carbon market aimed at reducing emissions
at the European level, the response to its implementation varies across Member
States, leading to diverse emissions profiles and behaviors. To thoroughly evalu-
ate the effectiveness and impact of the EU ETS, a comprehensive European-scale
study must hence consider the specificities and heterogeneity among the con-
tributing countries. The distinctions in power sector fossil fuel CO2 emissions
across the EU ETS Member States in each phase of the EU ETS can be at-
tributed to several factors, including economic structure, energy mix, historical
emissions, weather conditions and renewable electricity generation potential, en-
ergy efficiency measures, national policies and regulations, and interconnection
and energy trade. For the purpose of this analysis, we employ a set of variables
and indices as predictors of power sector fossil fuel CO2 emissions to capture
pivotal factors from those enumerated above. This includes two aggregate indi-
cators for electricity demand (as a direct driver of power generation, influencing
fuel use and emissions) and air temperature (to consider spatial variability of
weather conditions across the EU ETS zone). Additionally, three indices for
global energy prices (crude oil, natural gas, and coal) are utilized to capture
the economic viability of different generation sources, influencing the fuel mix
and CO2 emissions. Lastly, two renewable electricity indices (embracing solar
and wind power generation and potential across the EU ETS zone) and an over-
lapping policy and measure index (capturing the potential concurrent impact
of parallel national climate and energy policies and measures on power sector
emissions) are included in the analysis. The focus here is not to encompass the
entire set of potentially pertinent explanatory factors for predicting power fossil
fuel CO2 emissions. Indeed, the analysis in this paper is narrowed down to a
set of predictors of fossil fuel CO2 emissions that remain unaffected directly by
the implementation of the EU ETS, and whose nature of relationship with the
target variable remains consistent before and after the commencement of each
trading period. Lastly, and most importantly, the choice of potential predic-
tors is guided by the availability of data at the temporal and spatial resolution
required for this study.

When considering its impact on CO2 emissions, air temperature is often
associated with its connection to energy demand, particularly in electricity con-
sumption. Low (high) temperatures increase the need for heating (cooling),
thereby increasing both electric and non-electric (fossil fuel) energy consump-
tion4. This, in turn, contributes to heightened CO2 emissions (see, among oth-
ers, Mansanet-Bataller et al., 2007; Alberola et al., 2008; Benz & Trück, 2009;
Hintermann, 2010; Yao, 2021). Increasing temperatures can also influence the
electricity supply side by either raising water temperatures, negatively affect-
ing the cooling efficiency of thermal (nuclear and fossil fuel) power plants, or
diminishing the efficiency of solar photovoltaic panels–both scenarios result in

4The impact of high temperatures on the use of fossil fuels for purposes other than electric-
ity generation is less clear since air conditioning systems used for satisfying cooling demand
are predominantly powered by electricity (Melillo et al., 2014).
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increased emissions levels (Ebinger & Vergara, 2011). Although air temperature
affects energy needs, the direct driver of emissions is the demand for electricity,
which necessitates power generation often reliant on fossil fuels. Therefore, in-
cluding an indicator for electricity demand alongside air temperature becomes
crucial for counterfactual estimation of power sector fossil fuel CO2 emissions.

Given the expected reduction in carbon emissions with an increased share of
renewable energy sources (Dogan & Seker, 2016; Bento & Moutinho, 2016), it
is crucial to highlight the role of renewable energy generation as a complemen-
tary climate change mitigation tool to the EU ETS. As a result, this analysis
incorporates the level of renewable energy generation and potential (measured
by capacity factor) in each Member State to construct aggregate renewable
electricity indices. These indices are used as contemporaneous predictors for
counterfactual estimation of power sector fossil fuel CO2 emissions, aiming to
capture the potential impact of renewables on total emissions across the EU
ETS zone. Ultimately, while the EU ETS establishes the overarching frame-
work, Member States retain the flexibility to implement additional policies and
regulations tailored to their specific circumstances, influencing power generation
sector emissions. In a comprehensive study evaluating the effectiveness of the
EU ETS on power sector emissions, it is thus essential to account for the poten-
tial overlapping impact of these policies and measures, justifying the inclusion
of an overlapping policy index.

3. Materials and Methods

3.1. Research Setting and Data

This research examines the environmental effectiveness of the EU ETS in
reducing power sector emissions within a geographical zone covering 24 coun-
tries that were participants in the EU ETS during all three initial phases.5 The
study area is hereinafter referred to as the EU ETS zone. We use monthly data
on power sector fossil fuel CO2 emissions within this zone, along with a num-
ber of contemporaneous predictors associated with these emissions to estimate
counterfactual scenarios following the launch of each EU ETS phase. Further
details on the counterfactual estimation of power sector emissions and the na-
ture of contemporaneous predictors are provided in Section 3.2.2. The datasets
used to compile the final sample for analysis can be listed as follows: country-
level monthly time series of power sector fossil fuel CO2 emissions; country-level
monthly weather and energy indicators, namely air temperature, electricity de-
mand, wind power generation and capacity factor, solar power generation and
capacity factor. The power generation and capacity factor indicators contribute

5These countries consist of 23 EU Member States (Austria, Belgium, Czechia, Cyprus, Den-
mark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Netherlands, Poland, Portugal, Slovakia, Slovenia, Spain, and Sweden) plus the
United Kingdom.
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to the construction of European-scale renewable electricity indices; monthly en-
ergy price indices for oil, natural gas, and coal, capturing global fluctuations in
prices of key fossil fuel energy commodities; and national climate and energy
policies and measures, used to construct an overlapping policy and measure in-
dex that reflects the comprehensive parallel regulatory framework for climate
and energy across the EU ETS zone. The final aggregate dataset retained for
empirical analysis, derived from an intermediate country-month dataset with
6048 observations, consists of 252 observations with monthly timestamps that
span from January 2000 to December 2020, covering five full years before the
launch of the first EU ETS phase through the end of the third phase.

3.1.1. Power Sector Fossil Fuel CO2 Emissions

Monthly time series of power sector fossil fuel CO2 emissions, expressed in
kiloton (kt), for the 24 EU ETS Member States under study over the 2000-
2020 period are retrieved from the Emissions Database for Global Atmospheric
Research (EDGAR v7.0)6 (Crippa et al., 2022). The EDGAR offers indepen-
dent estimates of global anthropogenic emissions and emission trends based on
publicly available statistics, categorized by main source.7 For the purpose of
this study and to align with its objectives, the original dataset is subsetted to
focus only on fossil fuel CO2 emissions in each country under the 2006 IPCC8

Guidelines for National Greenhouse Gas Inventories code 1.A.1.a (Main Activ-
ity: Electricity and Heat Production). Monthly emissions values for each month
in the study period are aggregated to derive a total for the entire EU ETS zone.
These monthly-summed values serve as the target time series for the analysis.
Summing the time series across countries to obtain an aggregate indicator is
consistent with the additive nature of emissions.

3.1.2. Weather and Energy Indicators

Country-level data on air temperature (K), electricity demand (MW), and
renewable (wind and solar photovoltaic9) power generation indicators (MW and
capacity factor ratio) are obtained from the Copernicus Climate Change Service
(C3S) operational energy dataset (ECMWF, 2020), provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF).10 Air temperature
and electricity demand indicators are employed as stand-alone contemporane-
ous predictors in the counterfactual estimation of power sector emissions. Mean-
while, renewable electricity measures (power and capacity factor ratio) are used

6https://edgar.jrc.ec.europa.eu/dataset_ghg70
7https://data.europa.eu/doi/10.2904/JRC_DATASET_EDGAR
8Intergovernmental Panel on Climate Change
9Data on hydropower generation from run-of-river units and units with reservoirs is avail-

able for only 9 EU ETS Member States included in this analysis–countries with substantial
installed hydropower capacity (Austria, Germany, Spain, Finland, France, Italy, Portugal,
Sweden and Slovakia). For consistency in constructing renewable electricity indices, the anal-
ysis is hence confined to wind and solar photovoltaic power generation.

10https://cds.climate.copernicus.eu/
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to construct composite indicators, which are subsequently employed as contem-
poraneous predictors (Section 3.2.2).

3.1.3. Energy Price Indices

Monthly global price indices (reference year 2016) for crude oil (petroleum),
natural gas, and coal over the period 2000-2020 are sourced from the Inter-
national Monetary Fund (IMF) Primary Commodity Prices database (Interna-
tional Monetary Fund, 2023) and are employed as contemporaneous predictor
series in the analysis.

3.1.4. National Climate and Energy Policies and Measures

Data on policies and measures (PaMs) at the national level (outside the
EU ETS) that were implemented or adopted before 2020 and affect emissions
covered by the EU ETS are obtained from the European Environment Agency
(EEA) Database on Integrated National Climate and Energy Policies and Mea-
sures in Europe (Dauwe et al., 2023).11 The database encompasses policies and
measures (PaMs) aimed at achieving climate change mitigation and energy tar-
gets, such as reducing greenhouse gas (GHG) emissions, producing additional
renewable energy, or reducing overall energy consumption in different sectors.
For the purpose of this study, only those PaMs targeting CO2 emissions in the
energy supply sector in each country are subsetted, resulting in a total of 95
policies (including economic, fiscal, regulatory, information, planning, educa-
tion, research, and voluntary ones) across 23 countries. The national policies
in this dataset are summarized into a European-scale overlapping policy and
measure index for each month. This index is subsequently used as a contempo-
raneous predictor series in the analysis (Section 3.2.2).

3.2. Methodology

The methodology employed in this study is centered around three primary
themes: defining the structure of the predictive model for estimating counterfac-
tual power sector fossil fuel CO2 emissions, determining the contemporaneous
predictors used by the model for counterfactual estimation of such emissions,
and, ultimately, establishing how causal inferences are derived from the model’s
results. All aspects of data analysis, modeling, and visualization in this study
were carried out using the R programming language (R Core Team, 2020).

3.2.1. Counterfactual Estimation of Power Sector Emissions

To estimate the causal effect of the launch of each EU ETS phase (considered
as a policy intervention) on power sector emissions across the EU ETS zone,
we employ CausalImpact (Brodersen et al., 2015)–a Bayesian structural time
series (BSTS) model. The BSTS framework allows assessment of the causal
impact of an intervention or treatment on a particular outcome variable, while
accounting for underlying time series dynamics and other confounding factors.

11https://pam.apps.eea.europa.eu/
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This approach is based on a state-space model, assumes that the observed time
series data is generated by a combination of unobserved components, including
the underlying trend, seasonality and a linear regression on the contemporaneous
predictors. The space includes the parameters defining how these components
interact.

The BSTS model is initially constructed for a pre-intervention period. Sub-
sequently, the post-intervention period is specified, representing the timeframe
during which the causal effect is anticipated. The model is then utilized to
predict a counterfactual scenario, i.e., what would have occurred in the absence
of the intervention. The difference between the predicted and observed val-
ues during the post-intervention period provides the estimated causal impact.
To assess the credibility of the estimated impact, posterior intervals are derived
through sampling in a purely Bayesian setting, and the tail probability of a non-
zero causal impact is computed. In simple mathematical terms, the following
structural time series model is created for the pre-intervention period:

yt = Ztαt + εt (1)

αt+1 = Ttαt +Rtηt

The first line in Equation 1 links the observed value of the time series yt in the
pre-intervention period to a latent state vector αt. Zt is a matrix of coefficients
that relates the latent state to the observed values and εt is a random error term.
The second line governs the evolution of the state vector αt through time. Tt

is a transition matrix that describes how the latent state evolves over time, Rt

is a matrix of coefficients that relates the latent state to the random error term
ηt. For full technical details on the definition of the model, components of state
and posterior inference, see Brodersen et al. (2015).

The most important state component for the application considered in this
study is a regression component (with static coefficients to avoid overspecifi-
cation) that allows for construction of counterfactual predictions by creating
a synthetic control based on a combination of predictor series that were not
influenced by the intervention, i.e. the launch of each EU ETS phase. The con-
struction of a credible synthetic control necessitates leveraging three key sources
of information: the historical behavior of the target series (power sector fossil
fuel CO2 emissions) before the policy intervention (all the months in the data
preceding the launch of each EU ETS phase), the behavior of other contempo-
raneous series capable of predicting the target series during the pre-intervention
period, and the available prior knowledge about the model parameters (Broder-
sen et al., 2015). The contemporaneous control series are chosen based on their
behavior during the pre-intervention period, but their relevance for predicting
the counterfactual lies in their post-intervention behavior (i.e. in all the months
in the data following the launch of each EU ETS phase). This aligns with the
fundamental assumption that the chosen control series are unaffected by the pol-
icy intervention themselves and hence continue to exhibit a stable relationship
with the target series even after the policy intervention. Choosing an appropri-
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ate set of series to serve as contemporaneous controls thus represents the most
challenging aspect of the methodological approach employed in this study.

In the context of the present analysis, the BSTS framework offers four dis-
tinct advantages over classical statistical and econometric models. First, it can
handle multiple covariates, which can help to control for confounding factors,
such as renewable electricity generation potential and overlapping policies and
measures that might influence the impact of the intervention–the launch of each
EU ETS phase. Secondly, in contrast to classical models that primarily focus
on estimating the overall average effect, the utilized approach can demonstrate
the temporal evolution of the policy intervention’s effect–the launch of each EU
ETS phase–throughout the duration of the phase. Thirdly, the model effectively
handles non-stationarity through accommodating multiple sources of variation
in the time series such as local trends and seasonality. Ultimately, by incorpo-
rating uncertainty into the modeling process, the model provides not only point
estimates of counterfactual emissions but also probabilistic assessments of the
causal impact. Using parameter priors and the provided data, the model com-
putes the posterior distribution of the response variable (emissions) anticipated
in the absence of the policy intervention (the launch of each EU ETS phase).
subsequently, it compares the observed actual emissions to this distribution and
quantifies the tail-area probability, representing the likelihood, under the cal-
culated posterior, that the emissions deviate at least as significantly from the
expected value as observed.

For each phase of the EU ETS, all available data preceding the launch of that
phase is utilized to estimate counterfactual emissions throughout the phase’s
duration. This approach enables the drawing of causal inferences regarding
the effectiveness of each phase separately and independently from the previous
phase(s)–in the case of the second and third phases. The presumption here is
that the BSTS model inherently incorporates the impacts of preceding phase(s)
on power sector fossil fuel CO2 emissions, if any. An underlying assumption of
this phase assessment approach is that no omitted relevant factors are correlated
with both the launch month of each EU ETS phase and variations in fossil fuel
CO2 emissions.

3.2.2. Contemporaneous Predictors of of Power Sector Emissions

The BSTS model relies on a set of contemporaneous predictors to estimate
power sector fossil fuel CO2 emissions during post-intervention periods. These
predictors include average electricity demand and air temperature across the
EU ETS zone for each month, along with monthly global energy price indices
for crude oil, natural gas, and coal. Additionally, the model incorporates two
composite indicators as predictors. The first is a European-scale renewable
electricity index for each renewable energy type (wind and solar photovoltaic),
which combines the renewable electricity potential across the EU ETS zone (as
measured by capacity factor ratios) with the proportion of renewable power
production in each country on a monthly basis. The second is an overlapping
policy and measure index that consolidates the national climate and energy
policies and measures (PaMs) within the EU ETS zone for a given month. This
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index is designed to capture the potential overlapping impact of these PaMs
on power sector EU ETS emissions through a unified European-scale indicator.
The construction details of these two indices will be elaborated in the subsequent
sections.

Renewable Electricity Indices

For each month t, the renewable electricity index (REI) for wind and solar
photovoltaic (PV) power generation across the EU ETS zone are computed as
follows:

REI
(j)
t =

∑
i

 Renewable Electricity
(j)
i,t∑

i Renewable Electricity
(j)
i,t

× Capacity Factor
(j)
i,t

 (2)

Here, j ∈ {W,PV} and the summation index i runs across all countries
under study in the EU ETS Zone. The capacity factor is a measure of how effi-
ciently power systems operate, expressed as the ratio of actual power generated
to maximum potential power generation (installed capacity). By considering
the renewable power generation of each country in relation to the total renew-
able power generation in the EU ETS zone, the proposed composite indicator
offers a relative measure of each country’s contribution to overall renewable
power generation–a significant predictor of emissions in the power sector. It
is noteworthy that countries with similar levels of renewable power generation
might have different capacity factors due to variations in weather conditions
or renewable technology. Including the capacity factor in the calculation adds
a dynamic aspect to the index, accounting for variations in the efficiency of
renewable power generation in each country.

Overlapping Policy and Measure Index

For each month t, the overlapping policy and measure index (OPMI) is
computed as follows:

OPMIt =
∑
i

(
No. of Policies and Measuresi,t∑
i No. of Policies and Measuresi,t

× No. of Policies and Measuresi,t

)
(3)

Here, the summation index i runs across all countries under study in the
EU ETS Zone. This composite indicator represents a weighted average that
takes into account the heterogeneity in the number of policies and measures
across the overall climate and energy policy landscape of the EU ETS zone, as
well as the actual number of policies and measures implemented or adopted by
each country at each time point. The index assigns more weight to countries
contributing a higher share of the total policies each month. It serves as a
method of acknowledging both the quantity and the relative contribution of each
country’s policies to the overall set of implemented or adopted measures, the
outcomes of which may potentially overlap with emissions reduction resulting
from the EU ETS over the first three phases.
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3.2.3. Causal Inference from Counterfactual Power Sector Emissions

After establishing the counterfactual estimation, the causal effect of each
EU ETS phase on power sector emissions is assessed by comparing observed
data to counterfactual predictions–indicating what would have occurred in the
absence of this emissions reduction mechanism. Let yt and y′t denote the total
power sector emissions across the EU ETS zone at time t with and without
the implementation of the trading scheme, respectively. yt and y′t may not be
observed simultaneously. Instead, what is observable at time t is

yt = δtyt + (1− δt)y
′
t (4)

where δt = 1 if t denotes a point in time (month) after the policy intervention
(the launch of each EU ETS phase, denoted by T0), and δt = 0 if t is a time
point (month) before the policy intervention and

y′t =

{
yt t = 1, ..., T0 − 1
ŷt t = T0, ..., T

Here, ŷt represents the estimated counterfactual total power sector emissions
across the EU ETS zone at time t, derived from the BSTS model, with T0 de-
noting the policy intervention point–the month when each EU ETS phase was
launched. In practice, the comparison between ŷt and yt is achieved by draw-
ing samples (n = 10000 in the present analysis) from the posterior predictive
distribution of the counterfactual series. For each draw τ , the pointwise impact
ϕ (defined as the difference between the observed and counterfactual values) at
each time point (month) t is calculated as

ϕ
(τ)
t = yt − ŷ

(τ)
t ∀t = T0, ..., T (5)

To quantify the cumulative effect of the EU ETS over time, we also compute
the cumulative sum of the pointwise impacts:

t∑
i=T0

ϕ
(τ)
i ∀t = T0, ..., T (6)

This cumulative sum is particularly useful in the context of this study since
the observed data represent power sector emissions across the EU ETS zone–a
flow quantity measured over a specific interval (month).

4. Results

As can be seen from Table 1, during the post-intervention period of Phase
I (January 2005 to December 2007), power sector fossil fuel CO2 emissions
averaged approximately 120.02 ×103 kt. The credible intervals reported in the
table represent a range of values within which there is a 99% probability that
the true parameter lies. Posterior tail-area probability refers to the Bayesian
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probability of observing the estimated causal effect or a more extreme effect
under the assumption that there is no causal effect. It represents the probability
of obtaining the observed effect or a stronger effect purely by chance. If the
posterior tail-area probability is small, the effect of the intervention can be
considered significant. In the absence of the first phase of the EU ETS, the
expected average emissions would have been 116.34 ×103 kt, with a 99% interval
ranging from 111.13 ×103 kt to 123.41 ×103 kt. Subtracting this prediction from
the observed emissions reveals a (non-significant, see below) causal effect of 3.67
×103 kt, with a 99% interval from −3.39 ×103 kt to 8.89 ×103 kt. Cumulatively,
the emissions totaled 4.32 ×106 kt during the post-intervention period. Without
the first phase of the EU ETS, the expected sum would have been 4.19 ×106

kt, with a 99% interval ranging from 4.00 ×106 kt to 4.44 ×106 kt.

Phase I (2005-2007) Average Cumulative

Actual Emissions 120018 4320665

Predicted Emissions (SD) 116344 (1980) 4188376 (71295)

99% Credible Interval [111130, 123408] [4000665, 4442683]

Absolute Effect (SD) 3675 (1980) 132290 (71295)

99% Credible Interval [-3389, 8889] [-122017, 320000]

Relative Effect (SD) 3.2% (1.7%)

99% Credible Interval [-2.7%, 8%]

Posterior Tail-Area Probability 0.04

Table 1: The EU ETS impact on power sector fossil fuel CO2 emissions in Phase I (2005-
2007), summarizing actual and predicted emissions, absolute (pointwise) and relative effects,
and Bayesian 99% credible intervals. Emissions are expressed in units of kt.

In relative terms, there was a +3% increase in power sector fossil fuel CO2

emissions during the first phase, with the 99% interval for this percentage rang-
ing from -3% to +8%. The probability of obtaining this causal effect by chance is
approximately 0.04, suggesting that while the launch of the first EU ETS phase
appears to have had a positive effect on emissions, this effect may be spurious
and not statistically significant when considering the entire post-intervention
period (2005-2007).

Figure 1 shows the monthly time series of actual (observed) and counterfac-
tual (predicted) emissions both before and during the first phase of the EU ETS,
along with absolute and cumulative effects. The observed significant positive
absolute (pointwise) effect in January 2007, the only time point where the lower
limit of the impact time series exceeded zero, could potentially be attributed to
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random fluctuations unrelated to the EU ETS.12 The pointwise and cumulative
effect panels in this figure suggest that there is no overall under- or overestima-
tion of emission values by the BSTS model during the pre-intervention period.
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Figure 1: Monthly trajectories of actual (observed) and counterfactual (predicted) emissions
(top panel); pointwise absolute difference between actual (observed) and counterfactual (pre-
dicted) emissions, accompanied by 99% credible intervals derived from 10000 Markov chain
Monte Carlo (MCMC) samples (middle panel); cumulative absolute difference between actual
(observed) and counterfactual (predicted) emissions, accompanied by 99% credible intervals
derived from 10000 Markov chain Monte Carlo (MCMC) samples (middle panel) (bottom
panel) for the first phase of the EU ETS (2000-2007).

It is evident from Table 2 that, during the post-intervention period of Phase
II (January 2008 to December 2012), power sector fossil fuel CO2 emissions
averaged approximately 107.67 ×103 kt. In the absence of this policy inter-
vention, the expected average value would have been 122.92 ×103 kt, with a
99% interval ranging from 116.62 ×103 kt to 132.23 ×103 kt. Subtracting this
prediction from the observed emissions yields an estimate of the (statistically
significant, as discussed below) causal effect the policy intervention had on the
target series, resulting in a reduction of −15.26 ×103 kt of emissions. The 99%
interval for this effect ranges from −24.56 ×103 kt to −8.96 ×103 kt. Summing
up the individual monthly values of the target series in the post-intervention
period, power sector fossil fuel CO2 emissions had an overall value of 6.46 ×106

kt. In contrast, in the absence of the second phase of the EU ETS, the expected
sum would have been 7.38 ×106 kt, with a 99% interval ranging from 7.00 ×106

kt to 7.93 ×106 kt.
Beyond these absolute effects, emissions values demonstrated a relative de-

crease of −12%, with a 99% interval for this percentage ranging from −19%

12From a technical standpoint, this may also be attributed to the shorter intervention period
for the first phase compared to the other two phases (36 months in the first phase, as opposed
to 60 and 96 months for the second and third phases, respectively). This short intervention
period could cause the model to struggle in distinguishing the signal from the noise.
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Phase II (2008-2012) Average Cumulative

Actual Emissions 107667 6459999

Predicted Emissions (SD) 122925 (3158) 7375473 (189490)

99% Credible Interval [116624, 132229] [6997429, 7933736]

Absolute Effect (SD) -15258 (3158) -915474 (189490)

99% Credible Interval [-24562, -8957] [-1473737, -537429]

Relative Effect (SD) -12% (2.2%)

99% Credible Interval [-19%, -7.7%]

Posterior Tail-Area Probability 0.00

Table 2: The EU ETS impact on power sector fossil fuel CO2 emissions in Phase II (2007-
2012), summarizing actual and predicted emissions, absolute (pointwise) and relative effects,
and Bayesian 99% credible intervals. Emissions are expressed in units of kt.

to −8%. This indicates that the negative effect observed during the interven-
tion period is statistically significant for Phase II. The probability of obtaining
this effect by chance is extremely small (Bayesian one-sided tail-area probability
= 1e− 4), confirming the statistical significance of the causal effect.

Figure 2 shows the monthly time series of actual (observed) and counterfac-
tual (predicted) emissions both before and during the second phase of the EU
ETS, along with absolute and cumulative effects. It can be seen that, through-
out the second phase, the lower limit of the impact time series never exceeded
zero. This indicates the absence of any statistically significant positive absolute
(pointwise) effect, or an increase in emissions, observed across the EU ETS zone
in individual months throughout the second phase. The cumulative effect chart
reveals a consistently decreasing pattern after the launch of the second phase,
indicating a systematic reduction in power sector fossil fuel CO2 emissions over
time as a consequence of this implemented policy intervention.

Table 3 provides an overview of the EU ETS impact on power sector fossil
fuel CO2 emissions in the third phase (January 2013 to December 2020). Dur-
ing the post-intervention period of Phase III, emissions averaged approximately
85.31 ×103 kt. In the absence of the policy intervention, the anticipated average
emissions would have been 105.58 ×103 kt. The 99% interval for this counter-
factual prediction spans from 98.61 ×103 kt to 112.13 ×103 kt. By subtracting
this prediction from the observed emissions, we obtain an estimate of the causal
effect of the intervention on the target series. This (statistically significant, as
detailed below) effect, amounts to −20.27 ×103 kt, with a 99% interval ranging
from −26.82 ×103 kt to −13.30 ×103 kt. The cumulative value of power sector
fossil fuel CO2 emissions was found to be 8.19 ×106 kt. Had the third phase of
the EU ETS not taken place, the predicted sum would have been 10.14 ×106 kt.
The 99% prediction interval for this counterfactual scenario ranges from 9.47
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Figure 2: Monthly trajectories of actual (observed) and counterfactual (predicted) emissions
(top panel); pointwise absolute difference between actual (observed) and counterfactual (pre-
dicted) emissions, accompanied by 99% credible intervals derived from 10000 Markov chain
Monte Carlo (MCMC) samples (middle panel); cumulative absolute difference between actual
(observed) and counterfactual (predicted) emissions, accompanied by 99% credible intervals
derived from 10000 Markov chain Monte Carlo (MCMC) samples (middle panel) (bottom
panel) for the second phase of the EU ETS (2000-2012).

×106 kt to 10.76 ×106 kt.
In relative terms, emissions exhibited a decline of -19%, with a 99% con-

fidence interval spanning from -24% to -13%.This indicates that the negative
effect observed during the intervention period is statistically significant for
Phase III. The probability of obtaining this effect by chance is extremely small
(Bayesian one-sided tail-area probability = 1e− 4), indicating that if the policy
intervention had no effect on emissions, there would be a chance of almost 0%
to see a negative effect at least as large as the one observed.

In relative terms, emissions exhibited a decline of -19%, with a 99% confi-
dence interval ranging from -24% to -13%. This indicates that the negative effect
observed during the intervention period is statistically significant for Phase III.
The probability of obtaining this effect by chance is extremely small (Bayesian
one-sided tail-area probability = 1 × 10−4), suggesting that if the policy in-
tervention had no effect on emissions, there would be almost a 0% chance of
observing a negative effect as substantial as the one obtained.

Figure 3 illustrates the monthly time series of actual (observed) and coun-
terfactual (predicted) emissions before and during the third phase of the EU
ETS, accompanied by absolute and cumulative effects. Much like the second
phase, the lower limit of the absolute (pointwise) impact time series consistently
remains below zero throughout the third phase, signifying the absence of any
statistically significant increase in emissions observed across the EU ETS zone
in individual months throughout the second phase. The cumulative effect curve
displays a continual decrease after the launch of the third phase, with a more
pronounced decline compared to the second phase. For all three phases, dur-
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Phase III (2013-2020) Average Cumulative

Actual Emissions 85306 8189397

Predicted Emissions (SD) 1.1e+05 (2571) 1.0e+07 (246769)

99% Credible Interval [98610, 1.1e+05] [9466577, 1.1e+07]

Absolute Effect (SD) -20275 (2571) -1946359 (246769)

99% Credible Interval [-26819, -13304] [-2574647, -1277180]

Relative Effect (SD) -19% (2%)

99% Credible Interval [-24%, -13%]

Posterior Tail-Area Probability 0.00

Table 3: The EU ETS impact on power sector fossil fuel CO2 emissions in Phase III (2013-
2020), summarizing actual and predicted emissions, absolute (pointwise) and relative effects,
and Bayesian 99% credible intervals. Emissions are expressed in units of kt.

ing the pre-intervention period, the model-derived estimates align closely with
the actual (observed) emissions, and the BSTS model successfully captures the
seasonal patterns.
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Figure 3: Monthly trajectories of actual (observed) and counterfactual (predicted) emissions
(top panel); pointwise absolute difference between actual (observed) and counterfactual (pre-
dicted) emissions, accompanied by 99% credible intervals derived from 10000 Markov chain
Monte Carlo (MCMC) samples (middle panel); cumulative absolute difference between actual
(observed) and counterfactual (predicted) emissions, accompanied by 99% credible intervals
derived from 10000 Markov chain Monte Carlo (MCMC) samples (middle panel) (bottom
panel) for the third phase of the EU ETS (2000-2020).
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5. Discussion

With reference to the relative ineffectiveness of the first (pilot) phase of the
EU ETS in reducing power sector fossil fuel CO2 emissions from 2005 to 2007,
the results of this study are consistent with what has been found in previous
studies (see for example Bayer & Aklin, 2020; Ellerman, 2015). As highlighted
by Ellerman (2015), such relative ineffectiveness may be attributed to the over-
supply of emissions allowances in the first phase. As expected, the analysis has
shown that the third phase, which encompassed more sectors, was more effective
than the second phase in reducing power sector fossil fuel CO2 emissions.

Like most studies, the findings of this paper must be considered within the
context of certain limitations, many (if not all) of which are commonly shared
with existing literature. However, thanks to the methodology we have em-
ployed, we have addressed one of the most critical limitations in existing litera-
ture, namely, the challenge of building credible counterfactuals for power sector
emissions without the need to find comparable units.

The first limitation is that it may not be entirely realistic to attribute all
(absolute and cumulative) reductions in CO2 emissions from fossil fuels in the
power sector between 2005 and 2020 solely to the EU ETS. Other policy pack-
ages at regional, national and EU levels, long-term tendency towards increased
energy efficiency (Ellerman et al., 2016), shareholder and stakeholder pressure,
and heightened environmental awareness may also have contributed to emis-
sions reduction across Europe during the period under study. As emphasized
by Martin et al. (2016), isolating the impacts of emissions trading systems on
emissions reduction from those of other factors is an extremely challenging, if
not impossible, practice. In the current analysis, an effort to control for the po-
tential influence of overlapping policies and measures (PaMs) on EU ETS CO2

emissions in the power sector is made by incorporating an overlapping policy
and measure index. This index is derived from the count of relevant national
climate and energy PaMs implemented or adopted before 2020, specifically tar-
geting the energy supply sector. However, this index primarily relies on the
quantity of PaMs across the EU ETS zone and unavoidably overlooks the qual-
ity of these PaMs in terms of their potential impact on emissions reduction.
Ideally, the construction of such an index should involve the quantification of
CO2 emissions reduction attributable to each PaM under examination. Due
to the unavailability of data on these reductions, reliance on the quantity of
policies remains the most feasible approach.

To assess the robustness of the constructed overlapping policy and mea-
sure index, we employed the OECD Climate Actions and Policies Measurement
Framework (CAPMF) database (Nachtigall et al., 2022) as an alternative source
for constructing comparable indices to serve as contemporaneous predictors of
power sector fossil fuel CO2 emissions. This allowed us to evaluate the consis-
tency of our findings across different data sources for climate and energy PaMs.
The CAPMF database provides annual data on two key measures for the vast
majority of countries analyzed in this study. These measures include informa-
tion on both the quantity of implemented market- and non-market-based actions
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and policies (both sectoral and aggregate) and the stringency of these actions
and policies. To ensure balanced data availability and facilitate comparison, we
focused only on the number of actions and policies in the new dataset, similar
to our original index construction. By employing the same methodology de-
scribed in Section 3.2.2, we constructed two alternative overlapping policy and
measure indices from the CAPMF database: one for market-based policies and
the other for non-market-based policies in the electricity sector across the EU
ETS zone.13 These alternative indices were then incorporated into the BSTS
model as contemporaneous predictors of power sector fossil fuel CO2 emissions.

The results obtained using the newly constructed dual indices (market-based
and non-market based) aligned with those obtained using the single overlapping
policy and measure index in the first and third phases of the EU ETS. Notably, a
statistically non-significant relative increase of +6.2% in emissions was observed
during the post-intervention period of the first phase, while a statistically sig-
nificant +15% decrease in emissions was obseved during the post-intervention
period of the third phase. The analysis of the second phase, however, presented
challenges when using the dual indices. The model’s prediction intervals widened
significantly from January 2010, hindering the validity of statistical inferences.
This issue stemmed from a technical limitation of the BSTS model and the
nature of the non-market based index, which exhibited a sharp transition from
dummy values (0 or 1) in the entire pre-intervention period (January 2000 to
December 2007) to a different set of values in the post-intervention period. This
abrupt shift disrupted the model’s ability to effectively leverage patterns and
relationships established during the pre-intervention period for accurate coun-
terfactual predictions in the post-intervention period. Consequently, the wider
prediction intervals reflected increased uncertainty due to the model’s difficulty
in adapting to the new pattern of one of the contemporaneous predictors. In
the first and third phases, the distribution of values for the non-market-based
index did not present challenges for the model’s learning process. In the first
phase, dummy values covered the entire duration of both pre-intervention and
post-intervention periods. In the third phase, the shift in values occurred during
the pre-intervention period, ensuring its incorporation into the model’s learning
process. In light of this robustness analysis, the single overlapping policy and
measure index constructed using the EEA Database on Integrated National
Climate and Energy Policies and Measures emerges as a reliable choice for a
contemporaneous predictor, as it demonstrates stability across all three phases
and avoids challenges in causal inference. Therefore, it remains the preferred
index for our analysis.

This study focused solely on the power sector’s CO2 emissions within the EU
ETS, neglecting emissions from other covered sectors. This presents a limitation
in the overall picture of the EU ETS’s impact. However, it is important to note
that the power sector is a dominant source of emissions within the EU ETS.

13Due to data availability limitations in this new dataset, the market-based and non-market-
based indices covered 23 and 21 countries, respectively.
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By focusing on this crucial sector, the study provides valuable insights into
the potential effectiveness of the program. Further research on other sectors is
certainly warranted for a more comprehensive understanding, but the focus on
the power sector offers a strong foundation for future investigations.

Other limitations?

6. Conclusion

As the cornerstone of the European Union’s policy to address climate change
and reduce CO2 emissions, the EU ETS has attracted great attention of scholars
since its launch in January 2005. Despite widespread research attention to this
trading scheme, comprehensive empirical evidence on achievement of its main
target (i.e. emissions reduction) over the course of the first three phases remains
scarce. In an effort to partially fill this gap, this paper offered a counterfactual-
based causal inference approach to the effectiveness evaluation of the the EU
ETS with regard to reducing power sector fossil fuel CO2 emissions over the
2005-2019 period.

By employing a Bayesian structural time series (BSTS) model and data on
several contemporaneous predictors, this study was able to verify whether each
of the three phases of the EU ETS could reduce monthly power sector fossil
fuel CO2 emissions across 24 EU ETS Member States. The analysis found sup-
port for a statistically significant reduction in emissions during the second and,
notably, the third phases of the EU ETS. Conversely, the first phase showed
a statistically non-significant increase in emissions. From an evolutionary per-
spective, it is evident that the effectiveness of the scheme has progressively
improved from the first to the third phases. This evolution highlights a notable
shift towards greater efficacy in emission reduction over time.

At the end, it should be emphasized that the primary purpose of this ex-
plorative study was to examine whether the European Union’s main carbon
pricing instrument could attain its principal objective of cutting fossil fuel CO2

emissions in the power sector, and to propose a novel methodological frame-
work for causal inference based on counterfactuals within the context of the EU
ETS environmental effectiveness assessment. Providing the full story behind
the findings of this research necessitates an in-depth analysis based on exten-
sive country-level data–an exercise that goes beyond the scope of this paper and
is left to future research.
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