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Evaluating second-hand EVs subsidies:

Efficiency and Welfare Gains

Ariane Bousquet, Juan-Pablo Montero, and Maria-Eugenia Sanin∗

Abstract

Decarbonizing transport is crucial to achieving net-zero emissions, with private cars

contributing significantly to greenhouse gas emissions. While subsidies for new electric

vehicles (EVs) are common, the recent inclusion of second-hand EV subsidies in several

countries raises questions about their economic rationale. Contrary to conventional thinking,

we show that while subsidies for second-hand EVs are often justified on equity grounds,

they also improve efficiency as they influence the equilibrium composition of the vehicle

fleet. Using a theoretical model that incorporates both vertical (vintage) and horizontal

(fuel type) differentiation, along with empirical evidence from the French car market, we

demonstrate that subsidies for new and second-hand EVs function as complements. By

employing both types of subsidies and adjusting them over time, policymakers can achieve

substantial welfare gains compared to focusing solely on new EVs.

∗Bousquet: Université Paris-Saclay and Renault (email: ariane.bousquet@universite-paris-saclay.fr); Montero:
Pontificia Universidad Católica de Chile, Aalto University, and ISCI (email: jmontero@uc.cl); and Sanin: CEPS
and Université Paris-Saclay (email: eugenia.sanin@univ-evry.fr). We thank Guy Meunier and Hugo Molina for
many useful comments.
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1 Introduction

Decarbonizing transport is one of the key milestones of succeeding the net-zero objective for

mid-century. Globally, 24% of CO2 emissions from energy consumption come from the transport

sector, 18% due to road transport. In France, the impact of the transport accounts for 31% of

total CO2 emissions, and from these emissions, private cars account for 56%, alongside other

local externalities.

Numerous countries have implemented incentive policies to promote the renewal of the

private car fleet by targeting the purchase of new electric vehicles (EVs).1 In particular, France

has first implemented a feebate policy as from 2008, with a tax on carbon emissive vehicles and

a subsidy for low-carbon vehicles. The policy has evolved since then to account for different car

characteristics such as weight, and more recently, to include second-hand EVs.

The inclusion of subsidies for used EVs may at first appear counterintuitive from an economic

perspective: if we want to substitute polluting cars for EVs shouldnt we care only about the cars

that enter the fleet? However, France is not alone in the trend toward incentivizing used EVs.

This trend is gaining momentum, primarily motivated by equity considerations. For example,

New Zealand introduced the Clean Car Discount Scheme from April 2022 to December 2023,

offering registration discounts based on CO2 emissions for both new and used vehicles.2 The

Netherlands offers a =C2,000 subsidy for used EVs since July 2020, which has led to a significant

increase in their adoption. More recently, Luxembourg reduced its maximum subsidy for new

EVs from =C8,000 to =C6,000 and introduced a =C1,500 subsidy for used EVs over three years

old.

While the stated objective of these governments may appear to focus on equity concerns,

this paper demonstrates that allocating subsidies between new and used cars is not solely about

equity but fundamentally a matter of efficiency. Contrary to common thinking, we show that

subsidizing used EVs, rather than exclusively focusing on new EVs, positively impacts the

equilibrium composition of the vehicle fleet and yields greater welfare gains than a subsidy for

new EVs alone.

Specifically, this paper develops a simple theoretical framework that extends the vertical

differentiation model of Barahona, Gallego, and Montero (2020), which considers vehicles dif-

fering only by vintages, by adding a horizontal dimension—the distinction between gasoline and

electric vehicles. This extension yields several novel findings.

First, we observe that drivers trade off horizontal and vertical attributes, leading to het-

1In the United States EV purchases are eligible for federal tax credits up to USD 7,500. Some states, such as
California, offer additional incentives, including rebates (for details see U.S. Department of Treasury). China, the
largest EV market, provides extensive subsidies and tax exemptions to encourage both production and adoption.
In Norway, extensive tax exemptions have provoked that nearly 90% of new car sales are EVs today. In the EU,
several countries have implemented purchase incentives, particularly in the biggest car markets like Germany,
even if under revision nowadays, the United Kindom (UK), Italy, France and Spain.

2Although this program successfully incentivized the registration of low-emission cars, it was ultimately dis-
continued due to budget constraints (see Ministry of Transport, New Zealand, 2024). Similarly, some German
states, such as Baden-Württemberg, have implemented reductions in registration fees for used EVs.
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erogeneous vehicle rankings and therefore different substitution patterns. This distinct feature

implies that, in this context, subsidies do not replicate Pigouvian taxes—one of the rare in-

stances where this occurs. Second, we demonstrate that subsidies for new and second-hand

EVs work as complements rather than substitutes, a critical insight for designing efficient poli-

cies. Finally, we show that subsidies on new EVs should decline over time as second-hand

vehicles become more important within the vehicle fleet. We add to the previous contributions

an empirical estimation of the theoretical model for France, what allows us to simulate alterna-

tive subsidies structures as compared to the Pigouvian first best. To the best of our knowledge,

this has not been studied before.

In the following section, we discuss the main contributions to the existing literature and

address the challenges involved in estimating a vehicle fleet model that incorporates both hori-

zontal and vertical differentiation.

2 Literature review

The Industrial Organization literature focusing on the car market can be broadly divided into

two main strands.

The first examines demand in the new car market, leveraging structural models that esti-

mate consumer preferences for a wide range of vehicle characteristics. This line of research,

grounded in the seminal work of Berry, Levinsohn, and Pakes (1995) (BLP), has advanced

our understanding of substitution patterns, merger impacts, and policy effects. Notably in

France, (D’Haultfœuille, Durrmeyer, and Février 2016) and (Givord, Grislain-Letrémy, and

Naegele 2018) employ nested logit models that they estimate on separated socio-demographic

groups to evaluate French policies like fuel taxes and the 2008 feebate. However, these models

typically assume unrestricted substitution across vehicles, as consumers do not agree on the

ranking of alternatives. Yet, this may mask the nature of consumer preferences, whether driven

by vertical differentiation (quality) or horizontal differentiation (taste). Addressing this gap

poses significant estimation challenges. Unlike standard logit models, which rely on a Type I

Extreme Value error term for identification, alternative approaches such as the pure character-

istics model of Berry and Pakes (2007) remove this assumption to better capture pure taste for

product characteristics. Although promising, such models are rarely implemented due to their

complexity, with notable applications like (Song 2015; Song 2007) for the CPU market and

(Barahona, Gallego, and Montero 2020) for the car market. In this paper, we get inspired by a

recent work by Duch-Brown et al. (2023), that build an adapted BLP-type model in which the

same product is sold through different distribution channels, and approximate it by a random

coefficient nested logit (RCNL) model for the estimation. Using a RCNL model is a way of

estimating the heterogeneity in preferences for discrete variables. Another option to RCNL is

to use a random coefficient logit model and put individual coefficients on discrete variables, as

described by Grigolon and Verboven (2014).

The second strand of the literature investigates equilibrium dynamics in the entire car fleet,
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analyzing trade-offs between new, used, and scrapped vehicles. Studies like Gavazza, Lizzeri,

and Roketskiy (2014) model vertical differentiation to explain transactions among heterogeneous

drivers in their willingness to pay for quality, while Bento (2009) link multiple car markets to

assess gasoline taxes’ effects. More directly related to our work, Barahona, Gallego, and Montero

(2020) use a vertical differentiation model and estimate it with Berry and Pakes (2007)’s pure

characteristics model to study first- and second-best policies against local pollution, focusing

on vehicle age as the key driver of vertical differentiation. While valuable, these frameworks do

not explicitaly account for horizontal differentiation, such as the choice between gasoline and

electric vehicles, which is necessary for modeling the energy transition.

Our paper bridges the gap between these two strands of literature. We first develop a simple

framework that integrates vertical and horizontal differentiation in a durable good market with

a two car types that stay in the fleet for two periods. Concretely, we add an horizontal dimension

to the two-period vertical model of Barahona, Gallego, and Montero (2020).

The theoretical development of including vertical and horizontal preferences not only presents

a more complete representation or reality but also proves to be a crucial contribution since it

breaks the equivalence between Pigouvian taxes and subsidies. Our main findings in this re-

gard is that subsidies do not replicate the work of Pigouvian taxes, and that a subsidy on

second-hand EVs must be implemented in the transition to net-zero emissions. This seems in

contradiction with the well known theoretical result that a Pigouvian tax (or an equivalent

subsidy) can implement the first-best on its own. This is because previous literature does not

consider the potential trade-offs between horizontal (here, fuel type) and vertical (here, vin-

tages) characteristics. The theoretical model also finds that subsidies to new and used EVs

work as complements in the implementation of the optimal policy and that subsidies to new

EVs should decrease as the number of used vehicles in the fleet increases.

To quantify the importance of previous results, we then turn to a more complete structural

model of demand. To this end we get inspiration from Duch-Brown et al. (2023), and esti-

mate a random coefficient model à la Grigolon and Verboven (2014) with random coefficient

on key vertical and horizontal characteristics, using 2019 French data at the district (supra-

municipality) level. We then simulate the impact of pollution taxes and subsidies to test for the

theoretical insights from the two-period model. Our main findings from the estimation are that

vertical preferences and price matter more to lower-income households while the preference for

EVs is higher for richer households. The simulation results from implementing pollution taxes

and alternative subsidy designs are in line with the theory, as we find that subsidies are not

symetric in their impacts to Pigouvian taxes and that a subsidy on the used-EV market brings

larger welfare then a new-car subsidy alone. Overall one of the main messages from this work,

although still preliminary, is the fact that subsidizing EVs on the used-car market is not only

a matter of equity but also proves more efficient.

The paper is organized as follows. Section 2 describes the simple model with horizontal

and vertical differentiation. Discussion of empirical strategy and data is in Section 3. Policy
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counterfactual analysis is in Section 4. Section 5 concludes.

3 A simple model of the car market

We develop a simple model of a market for durable goods where consumers differ in their vertical

and horizontal preferences for these goods. Some consumers place higher value on newer goods,

while others prioritize cleaner goods over conventional ones. We are interested in the market

equilibrium, where taxes and subsidies on second-hand units do have allocative implications,

i.e., they cannot be seen as simple transfers from or to consumers.

3.1 Market setting

Consider a market with two types of cars, electric vehicles (EVs) and gasoline (and diesel) cars,

each of which lasts for two periods, first as new and then as second-hand. For the purpose of

this simple model, think of new cars as cars that are few years old and younger and second-hand

as anything older than that. We will discuss the implications on our results of allowing cars to

last for an endogenous number of periods.

There are three agents in the market: car producers, car dealers, and drivers. The cost of

producing a new car is the same for both types of cars and equal to c. This is also the price

at which perfectly competitive producers sell new cars to car dealers.3 A large number of car

dealers buy new cars from car producers and rent them, together with second-hand cars, to

drivers.4 In the second period, dealers can either rent their cars for one more time or scrap

them for a value v. If the car is rented, its dealer can scrap it afterward for v, provided it still

exists, which happens with probability γ. To save on notation, we normalize the scrappage

value v to zero (we will come back to this normalization below).5

In addition, there is a unit mass of drivers who vary in their vertical preferences for new vs.

second-hand cars and their horizontal preferences for EVs vs. gasoline cars. These preferences

are captured, respectively, by the variables θ and η, which, for simplicity, are assumed to be

uniformly distributed over the unit square. Thus, a driver with preferences θ and η who rents

a type-i car, either electric (i = EV ) or gasoline-based (i = G), of age a, either new (a = 0) or

second-hand (a = 1), obtains

uia(θ, η) = V + θsa − txi(η)− pia (1)

3In non-competitive markets, we could change the interpretation of c to represent marginal cost plus a mark
up and conclusions from the model would not change.

4Note that the renting assumption, which is also in Barahona et al (2020) and Bento et al (2009), is only to
facilitate the presentation. The model would be the same without dealers and but with forward-looking drivers
purchasing cars from producers and trading them to other drivers.

5Considering a positive scrappage value does not change any of our results. It only introduces additional
notation and, as we comment below, a slight bias in (optimal) policy interventions. In any case, scrappage values
are only a small fraction of the value of a new car, less than 4% in Barahona, Gallego, and Montero (2020). We
consider a similar value in the empirical section.
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where V is a positive constant, sa is the car’s quality, with s0 > s1, t is the horizontal differenti-

ation parameter (Hotelling1929’s transportation cost) parameter, xi(η) is the “distance” of the

consumer to its fuel-type renting choice i, either xi(η) = η if i = G or xi(η) = 1− η if i = EV ,

and pia is the car’s rental price paid by the consumer, which may differ from the rental price

received by car dealers, denoted by p̃ia, in the presence of taxes and/or subsidies. The driver’s

problem is to decide in each period what age and fuel-type to rent so as to maximize (1).

Unlike EVs, gasoline cars emit all sorts of pollutants, some with global effects (e.g., CO2)

while other with local effects, i.e., effects at the city level lasting for a few hours (e.g., fine

particulates, CO, HC, NOx). Since polluting cars are more harmful as they age, even if they

are driven less (Barahona, Gallego, and Montero 2020; Jacobsen et al. 2022), we let ha be the

per-period pollution harm of a gasoline car of age a, with h1 > h0.

3.2 Market equilibrium

We are interested in theoretically modelling two equilibria, depending on the market share of

EVs. One is the steady-state equilibrium, when there are both new and second-hand EVs in the

market. The other is the transition equilibrium, when there are only new EVs in the market.

In our two-period setting, where the transition lasts only one period, the two equilibria can be

treated separately.6

There are several conditions that must hold in equilibrium for car dealers, with and without

policy interventions. The first is that when a dealer brings an extra car to the market, he or

she expects to break even, that is,

c = p̃i0 + δp̃i1 + γδ2v (2)

for i = EV,G and where δ < 1 is the discount factor (we will come back to this break-even

condition for when cars may last for more than two periods).

The second condition is that dealers must be indifferent between scrapping a second-hand

car and renting it for the last time and scrapping it afterward, provided the car still exits, that

is

v = p̃i1 + γδv (3)

Whether we are in the transition equilibrium or in the steady-state equilibrium, conditions (2)

and (3) imply that in equilibrium dealers face rental prices p̃i0 = c and p̃i1 = 0.7.

Given the durable-good nature of cars, the number of second-hand vehicles available for

rental one period cannot be larger than the number of new cars brought to the market in the

previous period. Considering the two-period model, this condition can be summarized simply

as:

6Adda and Cooper (2000) is another example where adjustments take one period.
7Recall we have normalized to zero the scrappage value of a car, i.e., v = 0
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q1 ≤ γq0 (4)

In the absence of any policy intervention, consumers face the same prices as dealers (i.e.,

pia = p̃ia), so their decisions, summarized in Figure 1, are easy to characterize. We first focus on

the panel on the left and the indifferent consumer’s conditions. To find the vertical cutoffs θG

and θEV , we determine the consumers that are indifferent between renting a new and a used

car of each energy type, following the seminal work of Shaked1982 on pure vertical product

differentiation. Consumers with high valuation for quality, those with θ > θG ≡ (pG0 −pG1 )/∆s =

(pEV
0 −pEV

1 )/∆s ≡ θEV = c/∆s (with ∆s ≡ s0−s1), rent new cars (a = 0) of either type in each

period, while consumers with a lower valuation for quality, θ < θG = θEV , rent second-hand cars

(a = 1). On the other hand, we find the horizontal cutoffs η0 and η1 by looking at the consumers

indifferent between renting a new (respectively used) gasoline car and a new (respectively used)

EV, similarly to the seminal work of Hotelling1929 on pure horizontal product differentiation.

Consumers located closer to the gasoline option, η < η0 ≡ 1/2+ (pEV
0 − pG0 )/2t = 1/2+ (pEV

1 −
pG1 )/2t ≡ η1 = 1/2, rent gasoline cars, while those closer to the EV option, η > η0 = η1, rent

EVs.

We restrict parameter values to ensure certain properties to hold in any market equilibrium

(with and without policy interventions), namely, (i) full coverage (the fact that all drivers rent

a car in equilibrium), (ii) a positive number of both new and second-hand gasoline cars being

rented, and (iii) a positive number of second-hand cars of either type being scrapped, except

during the transition, when there are no second-hand EVs. Note that necessary conditions for

ensuring properties (i) and (iii) above hold are υ > t/2, and ∆s > 2c, respectively. Property

(ii) holds automatically, given the symmetry of the no-intervention outcome. This property will

become more demanding as the social planner targets dirty cars, whether directly by taxing

them or indirectly by subsidizing clean ones.

Consider now the panel on the right of Figure 1, describing the transition equilibrium. The

only difference with the panel on the left is the absence of second-hand EVs, which explains

the relatively larger share of new EVs (EV0) and of second-hand gasoline cars (G1). In reality,

given the steady decline in their costs, the number of new EVs coming to the market during the

early years of the transition could be certainly smaller than the number when the steady-state is

reached. However, we do not want to enter into this possibility here. We want to concentrate on

policy design while keeping all else constant (we will come back to this declining-cost possibility

in the empirical section).

The absence of second-hand EVs in Figure 1(b) has also created consumers indifferent

between a new EV (EV0) and a second-hand gasoline car (G1). Their preferences lie over

the line ηEV/G(θ) ≡ 1/2 + (pEV
0 − pG1 − θ∆s)/2t = 1/2 + (c − θ∆s)/2t that comes from the

indifference uEV
0 = uG1 .

8 The way this indifference line is drawn assumes that vertical preferences

8We could also express this indifference by setting θEV/G(η)
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Figure 1: The no-intervention equilibrium

are stronger than horizontal preferences in that θEV/G ≡ (c− t)/∆s > 0.9

Given that the car market is perfectly competitive, it is not entirely surprising that the

no-intervention equilibrium depicted in Figure 1 is socially optimal in the absence of pollution,

i.e., whenever h0 = h1 = 0.

Figure 2: Social optimality of the no-intervention outcome in the absence of pollution

To see the previous statement formally, use Figure 2 to see the impact of introducing an

arbitrarily small tax, say of ε, on one of the four rental options, say on new gasoline cars.

The consumer rental price of these cars has now increased to pG0 = p̃G0 + ε = c + ε, while the

9Results hold equally under the alternative assumption where horizontal preferences are stronger than vertical
preferences. The empirical section will help us determine which assumption is more likely to hold in practice.
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remaining rental prices have stayed the same. The increase in the price of new gasoline cars has

moved the vertical and horizontal preferences of the indifferent consumers by ε/∆s and ε/2t,

respectively.10

The moves just described in Figure 2 have welfare implications of different nature, giving

rise to marginal gains and losses.

Let 1ia(θ, η) indicate that the utility-maximizing rental choice for consumer type (θ, η) is a

car of age a and fuel-type i. Then, welfare in any given steady-state period is given by

W =
∑

i

∑
a

∫
θ

∫
η
ûia(θ, η)dF (θ, η)− c

∑
i
qi0 −

∑
a
haq

G
a (5)

where ûia(θ, η) = uia(θ, η) + pia is the consumer’s utility before prices, F (θ, η) is the uniform

distribution over the unit square, and qia =
∫
θ

∫
η 1

i
adF (θ, η) is the number of cars of fuel-type i

and age a rented.

Marginal gains, which amount, respectively, to (only first-order effects are relevant)

∆W (+) =
ε

2t
(1− θG) c+

ε

∆s
η0c (6)

and

∆W (−) =
ε

2t
(1− θG) c+

ε

∆s
η0θG∆s+

ε

2t

∫ 1

θG

(1− 2η0)tdθ (7)

where θG = c/∆s and η0 = 1/2. The two terms in eq. (6) correspond to savings from fewer new

gasoline cars entering the market, in response to some individuals switching to new EVs (the

first term) and some others switching to second-hand gasoline cars (the second term). These

gains are completely offset by the first two terms in (7), as the result of more new EVs in the

market (the first term) and of some individuals suffering a vertical (i.e., quality) downgrade

(the second term). The last term in (7) captures the horizontal losses suffered by individuals

who switch from new gasoline cars (their preferred no-intervention option) to new EVs.11 Since

these individuals are located right at the middle of the horizontal space (at η0 = 1/2), their

losses vanish.

It is easy to anticipate that any other marginal adjustment in prices will also lead to no

welfare changes at the margin, confirming the social optimality of the no-intervention outcome

in the absence of pollution. This conclusion also extends to the transition phase shown in Figure

1(b).12

10These results are obtained from the updated indifference conditions.
11
∫ η0
η0−ϵ/2t

∫ 1

θG
(ûEV

0 − ûG
0 )dηdθ =

∫ η0
η0−ϵ/2t

1dη
∫ 1

θG
(1− 2η0)tdθ

12When the scrappage value of a second-hand car is strictly positive, the planner can improve upon the
no-intervention outcome with a small tax on new cars. This responds to a residual positive term, equal to
εη0(1 − γδ)v/∆s, as we add eqs. (6) and (7). By reducing (or postponing) their scrapping, this positive term
indicates that new cars have become relatively more expensive from a social point of view. In practice, this term
is small because both γ and δ are close to 1 (scrapping an old car a year later does not make much difference
for its survival and discounted scrappage value). For this reason we neglect all this in the theoretical part of this
work.
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3.3 Policy interventions

We now turn to the case when gasoline cars pollute, as happens in reality, i.e., when h1 >

h0 > 0. Clearly, in the absence of any policy intervention the market equilibrium described

above would result in socially inefficient levels of pollution. We will consider two types of

price-based interventions: taxes on dirty cars and subsidies on clean cars.13 There is no gain

in considering quantity instruments. With enough prices, the social planner can arrive at any

arbitrary allocation of cars.

As prescribed by Pigou, one way for the social planner to improve upon the no-intervention

outcome is to tax drivers of polluting cars an amount equal to the externality their driving

impose on the rest of society; here, to place taxes τ0 = h0 and τ1 = h1 on new and second-hand

gasoline cars, respectively.14 It turns out, not surprisingly, that doing so restores the first-best.

Proposition 1 Taxing gasoline cars at their Pigouvian levels, τ0 = h0 and τ1 = h1, restores the

social optimum (i.e., first-best).

Proof. See the Appendix.

Figure 3(a) illustrate how placing taxes τ0 and τ1 > τ0 on gasoline cars affect the steady-state

market-equilibrium outcome. Given their higher rental prices, c + τ0 and τ1, new and second-

hand gasoline cars see their market shares reduced significantly. Note that we require t > h1 for

these shares to remain strictly positive under Pigouvian taxation. The figure also assumes that

a fraction of second-hand cars, particularly EVs, continue to the scrapped in equilibrium. It is

worth noting that, as compared to the previous figure, the segment AB of indifference between

new gasoline cars and second-hand EV appears in the presence of emissions. Take, for example,

individual A, who is indifferent between G0, EV0 and EV1. To ensure this individual correctly

internalizes the external cost of his choice, we need σ0 = σ1 = h0. Individual B, on the other

hand, is indifferent between G0, G1 and EV1.
15

The first part of the proof of Proposition 1 consists precisely in showing that there are no

gains of adjusting either tax away from its Pigouvian level by a marginal amount. Proceeding

as above (with the only difference that now we must also account for changes in pollution), the

marginal gains of doing so would be

∆Wτ0 =
ε

2t∆s
(t− τ1) (τ1 − h1 − τ0 + h0) +

ε

2t∆s
(∆s− c− τ1 + τ0)(h0 − τ0) (8)

when adjusting τ0, and

∆Wτ1 =
ε

2t∆s
(t− τ1) (h1 − τ1 − h0 + τ0) +

ε

2t∆s
(c− τ1 + τ0) (h1 − τ1) (9)

13We rule out lump-sum subsidies. A tax policy can always be replicated with lump-sum subsidies by making
them large enough transfers to all individuals so as to cover the largest possible tax.

14For a global pollutant like CO2, a gasoline tax can function as a Pigouvian tax. For local pollutants,
while there is no equivalent tax, a registry tax based on expected (annual) pollution can work reasonably well,
as shown by Barahona et al. (2020). We are considering such taxes here and will also consider them in the
empirical application.

15We will see that this point is particularly telling to understand how taxes and subsidies work differently.
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Figure 3: First-best allocation

when adjusting τ1 (see the Appendix for details). It is immediate that these marginal gains go

to zero when τ0 = h0 and τ1 = h1. These results extend straightforwardly to the transition

phase, pictured in Figure 3(b), so they are omitted.

The second part of the proof requires showing that the planner cannot do better with an

additional price instrument, say a subsidy on one of the EVs, which is what would be needed

to arrive at any arbitrary allocation of cars. The latter already sheds some light on why two

subsidies on EVs may not be enough to replicate the work of two taxes.

One goal of this paper is to understand to what extent subsidies on clean technologies can

replicate the allocative work of Pigouvian taxes on polluting technologies. In most instances

taxing pollution is equivalent—from a welfare perspective—to subsiding pollution reduction.16

According to the existing literature there are few situations in which they are not. One is when

public funds are costly to raise (see, e.g., Bovenberg and Goulder (1996)). Taxing pollution

allows the government to reduce distortionary taxation somewhere else in the economy, while

giving subsidies to clean technologies (or pollution reduction) asks for more of such distortionary

taxation. Another situation emerges in a long-run context with free entry and exit of economic

agents (see, e.g., Baumol and Oates (1988), Spulber (1985)). Since any economic gain or loss is

dissipated in the long-run, subsidies necessarily lead to more entry than taxes, therefore they

must be set below their Pigouvian levels. In other words, subsidies cannot properly handle both

short and long-run decisions, i.e., pollution and entry decisions.

None of these considerations apply to our model (and empirical application). Besides ab-

stracting from costly public funds, our economic agents’ only decision is which technology to

adopt at any given point in time. There is no exit and entry in our setting; all individuals

16A good example where the equivalence holds is Weitzman’s (1974) prices vs. quantities.
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obtain positive surplus at all times. Yet, our market setting is another instance in which the

allocative equivalence of taxes and subsidies breaks down.

Proposition 2 Subsidies on new and second-hand EVs, σ0 and σ1, respectively, cannot replicate

the work of Pigouvian taxes.

Proof. See Appendix.

To find the optimal subsidies we can proceed as above and ask what would be the marginal

gains of adjusting them away from their optimal levels. These gains would be

∆Wσ0(σ0, σ1) =
ε

2t∆s
(t+ σ0)(σ1 − σ0) +

ε

2t∆s
(∆s− c− σ1 + σ0)(h0 − σ0) (10)

from adjusting σ0, and

∆Wσ1(σ1, σ0) =
ε

2t∆s
(h0 − t− σ0 − σ1) (σ1 − σ0) +

ε

2t∆s
c(h1 − σ1) (11)

from adjusting σ1. The optimal subsidies solve the system ∆Wσ0 = ∆Wσ1 = 0, which clearly fail

to implement the first-best, unlike taxes. While ∆Wσ0 = 0 calls, for example, for σ1 = σ0 = h0,

∆Wσ1 = 0 calls for σ1 = σ0 = h1. The previous shows that subsidies can only implement

the first-best when pollution levels of gasoline cars are equal (h0 = h1). Otherwise, subsidies

will be set at a level that is different from (at least one) of the pollution levels, away from the

Pigouvian level (i.e. equal to marginal damage). The previous example serves also to establish

the following result that we will use later.

Lemma 1 Let σ∗
0 and σ∗

1 be the optimal steady-state subsidies, i.e., those that solve the system

∆Wσ0 = ∆Wσ1 = 0. Then, h0 < σ∗
0 < σ∗

1 < h1.

Proof. See the Appendix.

What is it about our setting that subsidies for pollution reduction fail to replicate the work

of taxes on pollution? While taxes make drivers directly face the external costs of their choices,

subsidies attempt to do the same but indirectly, by compensating drivers for moving away from

their best alternatives or outside options. This would not be a problem if everyone’s outside

option to a second-hand (resp. new) EV were a second-hand (resp. new) gasoline car.

Our drivers, however, are willing to tradeoff vertical for horizontal attributes, giving rise

to more outside options to consider.17 For some individuals the outside option to a second-

hand EV is not a used gasoline car, but a new gasoline car. Thus, for subsidies to replicate

taxes, they would need a broader set of prices to account for these different outside options.

In other words, subsidies would need to be contingent on individuals’ outside options, with

all the implementation challenges (including information asymmetries) that this entails. One

way to handle this multi-attribute problem is to also subsidize some polluting technologies (in

17A similar multi-attribute problem arises in Lindenlaub and Postel-Vinay’s (2023) matching model.
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addition to clean ones).18 In our model this can be done either by subsidizing new gasoline cars

for h1 − h0, or by taxing old gasoline cars in an amount equal to h1 − h0. Either alternative,

together with σ0 = σ1 = h1, would implement the first-best.

One might speculate that, if for budget constraints the planner cannot rely on subsidies for

second-hand EVs, she would need to be more aggressive with subsidies for new EVs. A key

observation for the design of these subsidies, however, points to the exact opposite: in a context

with differentiation as we present herein subsidies work as complements, not as substitutes. In

other words, from expressions (10) and (11) it is clear that subsidies for both new and second-

hand EVs are needed.

Proposition 3 Subsidies for new and second-hand EVs act as complements: dσr
a(σa′)/dσa′ > 0,

where σr
a(σa′) is the optimal subsidy for an age a EV given some subsidy σa′ for an age a′ EV,

i.e., σr
a(σa′) solves ∆Wσa(σa, σa′) = 0 with a′ ̸= a and a, a′ ∈ {0, 1}.

Proof. See the Appendix.

A hint of the proof can be provided with help of expression (10). Let σr
0(σ1) be the

value of σ0 that solves ∆Wσ0(σ0, σ1) = 0 for any σ1 > σ0. As shown in the Appendix,

∂∆Wσ0(σ0, σ1)/∂σ0 < 0 and ∂∆Wσ0(σ0, σ1)/∂σ1 > 0. These two inequalities imply that

dσr
0(σ1)/dσ1 > 0. The proof proceeds likewise with (11) to show that dσr

1(σ0)/dσ0 > 0, where

σr
1(σ0) is the solution of ∆Wσ1 = 0, and then continues with cases where σ0 > σ1 in the relevant

range.

A case particularly illustrative of the implications of Proposition 3 is when the planner

considers allocating the majority of the subsidy budget to new EVs, even if Lemma 1 already

showed this is to be non-optimal. Figure 4 depicts the specific case of σ0 > σ1 = 0, where

η′′0 = 1/2− σ0/2t and θ′′EV = (c− σ0)/∆s. Estimating the net gains from marginally increasing

σ0 and letting these gains go to zero yields the first-order condition

(∆s− c)(h0 − σ0) = σ2
0 + σ0(t− h1) (12)

with its positive root being the relevant solution (recall that ∆s > c and t > h1).

The comparative statics of condition (12) are clear: higher values of either h0, h1 or ∆s call

for a higher (optimal) σ0, further displacing polluting cars and making the (vertical) upgrade

to a new EV more attractive. On the other hand, higher values of either c or t call for a lower

σ0, saving on production costs and horizontal losses. More striking in this comparative statics

analysis is the fact that if new gasoline cars are relatively clean (as is often the case for local

pollution), condition (12) suggests that the subsidy for new EVs should be zero when h0 ≈ 0,

provided there are no subsidies for second-hand EVs. Allocating subsidies to new EVs in this

18This alternative sounds like charging pollution taxes in combination with lump-sum subsidies to all individuals
and large enough to cover even the largest possible tax payment. Such way of replicating Pigouvian taxation
with subsidies is not only misleading—since behavior is still driven by taxes, not subsidies—but unrealistic. For
one, the subsidies involved would need to be substantial; and for another, consumers may perceive these two
instruments as acting separately rather than in tandem.
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Figure 4: Subsidies on new EVs only

case, even if the subsidy budget permits it, would be not only a waste of fiscal resources but

also inefficient.

Why is this? The answer is in Figure 4. A subsidy on new EVs has a relatively minor

impact on second-hand gasoline cars. Pushing too hard on this is costly, as it distorts decisions

not only regarding second-hand EVs but also new gasoline cars, especially if the latter are

relatively clean. The French feebate (bonus-malus) in place since 2008 only applies to the

purchase of new cars, subsidizing EVs and taxing gasoline cars. In our steady-state equilibrum,

the application of such policy would imply that η moves to the left and θ up, increasing the

relative attractiveness of G1 as compared to G0.
19. Such a policy succeeds in reducing the

number of new gasoline cars entering the market but results in a quality downgrade for drivers

while increasing the number of cars polluting h1.

But there is more, somewhat hidden in our two-period setup. If we let the time at which

old cars are scrapped and retired from the market to be endogenous, say, after T years, then

increasing subsidies for new EVs has the perverse consequence of extending the life of old gaso-

line cars. The reason is implicit in condition (2). Car dealers must break even in equilibrium.

Since in an endogenous-T setup an increase in the subsidy for new EVs necessarily depresses

the rental price of new gasoline cars, this leads to an increase in the rental price of older gaso-

line cars. As a result, it becomes more attractive for dealers to keep these older and polluting

models on the market longer rather than scrapping them.20

For the same break-even reason, extending subsidies to second-hand EVs depresses the

rental price of second-hand gasoline cars (and increases the rental price of new gasoline cars),

19It is worth noting that the indifference between EV0 and G1 also changes and could entail a welfare gain or
a welfare loss, depending on the relative value of ϵ/δs

20This break-even condition is also behind many of the results in Barahona et al’s (2020) vertical-differentiation
model, including the complementarity of prices, whether taxes or subsidies, for different vintages.
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accelerating their exit from the market. This further speaks of the strong complementarity

of subsidies for new and second-hand EVs. We come back to these price adjustments in the

empirical section.

So far we have focused on the steady-state outcome, when there are enough second-hand

cars of either type. Issuing subsidies for second-hand cars that don’t yet exist in the market

is obviously not possible, raising questions about the recommendations outlined above for the

transition phase, i.e., when there is a limited or nonexistent presence of second-hand EVs, as in

our two-period setting. Unlike in the steady state, the planner should be more aggressive with

subsidies for new EVs during the transition phase.

Proposition 4 Subsidies on new EVs should decline over time with the presence of second-hand

EVs in the market: σ∗∗
0 > σ∗

0, where σ∗∗
0 and σ∗

0 ≡ σr
0(σ

∗
1) are the optimal subsidies for new

EVs during the transition phase and in steady state, respectively.

Proof. See the Appendix

Some intuition for the proposition can be conveyed with the aid of Figure 5, where θ′′′EV =

(c− t− σ0)/∆s, from which we arrive at the first-order condition

(∆s− c)(h0 − σ0) = σ2
0 + σ0(t− h1)− th1 (13)

that solves for σ∗∗
0 (see the Appendix for details). The gap between σ∗∗

0 and σ∗
0 can be viewed

as the result of two opposing effects: “only-new” and “new-and-used” effects. When the planner

decides to rely exclusively on (optimal) subsidies for new EVs (i.e., σ1 = 0), it is natural to

expect these subsidies to decline over time, as these subsidies become less effective at reaching

holders of second-hand gasoline cars (see Figures 4 and 5). This result—that σ∗∗
0 > σr

0(σ1 = 0)—

can be formally seen by comparing first-order conditions (13) and (12). This is the “only-new”

effect.

Acting in the opposite direction is the “new-and-used” effect, which stems directly from the

complementarity of subsidies for new and used EVs established in Proposition 3. As the used

or second-hand EV market expands, the planner finds it optimal to increase the subsidies on

used models, which in turn makes it optimal to increase the subsidies on new EVs as well, i.e.,

σ∗
0 > σr

0(σ1 = 0). As stated in the proposition, however, this new-and-used effect is not large

enough to fully offset the only-new effect.

In the next sections we take propositions 1 to 3 to the French car market and examine

their fiscal and welfare implications. As for proposition 4, we give a numerical example in the

Appendix.

4 Estimation

Herein, we estimate horizontal and vertical preferences that we then use to simulate the fleet

composition and welfare impacts of various policy instruments. Subsection 4.2 presents our
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Figure 5: Transition phase

empirical strategy to adapt the simple model of vertical and horizontal differentiation into a

structural demand model that retains the essence of the theoretical framework while accom-

modating the data and addressing estimation challenges. In subsection 4.3, we describe how

we build a unique database of the French car fleet that is used for estimating horizontal and

vertical preferences and to calibrate other fleet parameters such as the survival rate γ. Global

and local pollution parameters are calibrated using various datasources described in subsection

4.4. On the other hand, costs ck and scrapping values vk are determined endogeneously in

section 5.

4.1 Demand model

We specify a structural demand model à la BLP (Berry, Levinsohn, and Pakes (1995)) with

random coeffficients on discrete parameters as discussed in Grigolon and Verboven (2014). The

indirect utility of consumer i buying car model j is given by:

uij = αipj + xjβ + ξj +

2∑
a=0

βa
i 1a + ζi1k=EV + (1− ρ)ϵij (14)

with pj the price, and xj a vector of observable car characteristics. Herein xj contains a

constant, fuel costs (in =C/100km), and a measure of acceleration (power in 10kW divided by

weight in 100kg). ξj is the unobserved quality of product j. The fourth term captures the

preference for car vintages, with 1a a dummy variable that takes the value one if the car is of

vintage a. 1k=EV is a dummy variable that takes the value one if the car is an EV. ϵij is the

individual-specific taste for product j that is Type 1 extreme-value distributed. ρ is a nesting

parameter21 representing the degree of correlation for products of the same fuel type. It is

210 ≤ ρ < 1
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worth noting that Equation 14 is the empirical version of Equation 1 considering additional

vintages and vertical characteristics.

We allow price sensitivity αi to vary linearly with income, where we define i’s income as the

median income of the district where consumer i lives. This is the case because we are interested

in studying how preferences for vertical (vintage) and horizontal (EV) characteristics change

with income. To capture income heterogeneity we put an individual coefficient on both the

vintage dummy new (a=0) and the fuel-type dummy EV (k=EV). We also specify an outside

good, corresponding to not renting a car (ui0 = ϵi0). We can write uij = δj + µij + ϵij with

= ᾱpj + xjβ + ζ̄1k=EV +
∑2

a=0 β
a + ξj and µij = αinci + ζinci1k=EV + β0inci1{a = 0} with

inci the median income of the district where consumer i lives.

We consider three alternative specifications: (i) a simple logit model with ρ = 0 and α =

ζ = β0 = 0, (ii) a nested logit model without heterogeneity ρ ̸= 0 and α = ζ = β0 = 0 , and (iii)

ρ = 0 which gives a random coefficient logit model with district-specific coefficients on discrete

horizontal and vertical variables. As discussed in (Grigolon and Verboven 2014), specification

(iii) is a good alternative to using a random coefficient nested logit model and brings similar

results in terms of substitution patterns between products. Specification (ii) is also interesting

since the nesting parameter can be seen as a proxy of the horizontal cutoff η. Specification (i)

is a reference without heterogeneity.

Focusing on specification (iii), we use the properties of the distribution of ϵij to derive sij ,

i.e. the probability that consumer i rents product j. The equivalent expression for specification

(ii) and (iii) can be found in the Appendix.

sij =
exp(δj + µij)

1 +
∑J

k=1 exp(δk + µik)
(15)

We get the national fleet shares of product j by summing over all districts:

sj =
∑
i

exp(δj + µij)

1 +
∑J

k=1 exp(δk + µik)

Ni∑
iNi

(16)

With Ni the population of district i.

4.2 Empirical strategy

For the three specifications detailed in the previous section we estimate the preference for

product characteristics using the generalized method of moments. For this, we use exogenous car

characteristics and traditional Berry, Levinsohn, and Pakes (1995)’s instruments, i.e. the sum of

these characteristics for products of the same and of rival brands. For specification (iii) we add

to the previous, micro moment estimations following Nurski and Verboven (2016). The micro-

moments will help identify the individual-specific terms of utility parameters. In particular,

for the micro moments estimation we use the covariance between product characteristics and

consumer income at the district level.
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4.3 Car fleet database

To estimate the model described in the previous subsection, we build a unique dataset of the

French private car fleet for the year 2019. To do so we combine car registration data at the

district level obtained from AAA data and used-car prices obtained from the online sales website

Leboncoin.fr22. We then extract fuel prices, socio-economic and demographic data from the

National Institute of Statistics and Economic Studies (INSEE). Finally, we fill the few missing

values using technical data from Argus.fr and the French Energy Transition Agency (ADEME).

The car registration dataset contains all private vehicles in 2019 at the supra-municipality

level, hence 38.3 million vehicles. For each car, we observe fuel type and unit consumption

(l/100km), CO2 emissions (g/km), brand, model, first registration date, and new car prices.We

match the car registration dataset with used-car prices from the online sales website Lebon-

coin.fr.

Mainland France has 34,968 municipalities, and municipalities that are larger than 5,000

inhabitants are subdivided into districts. Herein, we select the 41,173 districts for which we

find available demographic data for the year 2019. Our final dataset contains 27,644,447 obser-

vations, hence 72% of the French car fleet.

To match Equation 14, we build two fuel-type groups, EVs and gasoline cars, four car

segments, small, medium, large, and SUV, and four vintage groups, new, less than 5 years

old, 6-10 years old, and old vehicles (11-20). Without loss of generality, we restrict the main

estimation sample to small cars representing 45% of the fleet, limiting the influence of vertical

characteristics other than vintage. In Appendix we run the estimation for all different segments

in the French car market showing results are robust. We aggregate the remaining products by

brand, model, vintage group and fuel type, resulting in 336 product types. Product types are

constructed as a fleet-weighted average of the characteristics of products sharing the same brand,

model, fuel type, and vintage. We construct a rental-price variable as in (Barahona, Gallego, and

Montero 2020), using the no-arbitrage condition from Equation 2 given by pja = Pja − δPj,a+1

with Pja the price of product j belonging to vintage group a, δ the discount factor, which we set

at 0.9 per year.23. To lower computational time, we draw 3.981 representative districts based

on district income and density (details on representativity are given in Appendix).24 In each

district, we observe quantities for the 336 products, resulting in 1,337,616 observations.

4.4 Pollution Data

We observe tailpipe CO2 emission levels (g/km) for each car in the dataset. We denote Eka the

total emissions from product of fuel type k and vintage group a in a given year.

22We thank Quentin Hoarau for providing the data.
23Considering that our vintage groups are {new, 1-5 years old, 6-10, 11-20 years old}, we get pj,old = Pj,old −

δ10Pj,a>20 for the last vintage group. To compute prices of cars over 20 years old Pj,a>20, we consider that old
cars lose about 5% of their value each year.

24Income is the median income of the district while density is a variable defined by the National Institute of
Statistics and Economic studies that takes a value between 1 and 4. 1: very urban, 2: urban, 3: rural, 4: very
low-density area.
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Table 1: Summary statistics of Prices, CO2, Fuel Costs, and Income. Nb Obs: 1,337,616

Prices CO2 Fuel costs Income

Mean 10605 118 7.43 21942
Min 1327 0 2.32 11540
25% 4639 108 6.83 19890
50% 10562 122 7.40 21530
75% 14880 132 8.06 23590
Max 39346 169 14.6 52280

Eka = qkaekaxk (17)

with qka the number of cars and eka total emission level (g/km) of each fuel-vintage type,

which we observe in the fleet dataset, and xk the average number of kilometers driven by a

car of energy k, which we get from French government data (Ministry of Environment, 2023).

It is worth noting that eka ∗ xk = hka as noted in the theoretical model. For local pollutants,

we combine data from the European (Handbook on the external costs of transport, 2019) and

(Ministry of Environment). Herein, we consider that EVs do not emit CO2 nor any local

pollutants. In 2019, an average gasoline car is driven 11,909 kilometers per year. The main

focus of this paper is on CO2 which is a global pollutant so we do not differentiate pollution

harm by location and we take the average value for dense areas for local pollutants.

Table 2: Average per car yearly environmental harm, from driving gasoline cars of each vintage
11,909 km per year. CO2 price is the 2020 French carbon price, hence 54=C per tonne of CO2.
Source: Quinet Report (2019), ADEME, Handbook of the external costs of Transport (2019).

Vintage CO2 (=C/year) Local pollution (=C/year)

new 83 14
1-5 85 92
6-10 90 111
11-20 100 200

We observe in Table 2 that with a low carbon price (54=C per tonne of CO2), local pollutant

harm is larger than global pollutant harm. This is because we choose to use the cost of local

pollutants for dense urban areas for the entire territory and because CO2 emission of gasoline

cars are around 1.5 ton. In future developments of this work, we will differentiate this cost

between urban and rural areas. As older cars are driven less, we will also differentiate the

number of kilometers driven per vintage.

4.5 Estimation results

We present the estimation results for the three specifications mentioned in Section 4.1 in Table

3. Hansen tests validate all specifications. Additionally, we estimate an alternative version of

specification (ii) across 10 income groups and specification (iii) for different car segments. The
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results for these additional specifications are provided in Appendix 8.4.

In all cases, consumers exhibit a preference for newer and younger cars over older ones.

Regarding electric vehicles (EVs), specifications (i) and (iii) indicate an overall consumer aver-

sion to EVs. This aligns with the findings of specification (ii), which shows a high nesting

parameter of 0.8, indicating a strong correlation in utility among cars of the same fuel type

(EV or gasoline). Across all three specifications, the estimated marginal utilities for price are,

on average, negative and statistically significant. Consumers are also responsive to fuel costs,

with the exception of specification (ii).

Focusing on specification (iii), we observe that price sensitivity decreases slightly as income

increases. Interestingly, wealthier households derive less utility from new cars compared to used

cars. Moreover, income has a positive effect on preferences for EVs, suggesting that higher-

income households experience less disutility from EVs compared to lower-income households.

Table 3: Estimation Results. Price is in 10k=C, fuel costs in =C/100km, power/weight in
kW/10kg, income in 10k=C, EV is a dummy variable taken against the reference category Gaso-
line, vintage groups are taken against cars older than 10 years old. ρ is the nesting parameter
giving the degree of correlation between products of the same fuel types. The sample contains
1,337,616 observations classified in 336 product types across 41,173 districts.

Var (i) (ii) (iii)
constant -9.17** -8.93*** -9.23***

(3.59) (1.17) (3.38)
price -7.64** -5.63*** -8.69***

(3.28) (0.355) (3.07)
fuel cost -0.542** 0.116 -0.548***

(0.230) (0.097) (0.103)
power/weight 11.92 11.58*** 12.18

(8.12) (1.53) (7.47)
EV (ref: Gasoline) -3.17*** -5.61**

(1.10) (2.59)
new (ref: old) 10.05** 7.20*** 12.15***

(4.12) (0.565) (3.01)
1-5 (ref: old) 6.75*** 4.04*** 6.81***

(2.23) (0.441) (2.09)
6-10 (ref: old) 2.51** 1.53*** 2.54**

(0.842) (0.383) (0.795)
ρ 0.795***

(0.070)
income*price 0.408***

(0.0693)
income*EV 1.02**

(0.454)
income*new -0.858*

(0.404)
Hansen test
Statistics 2.21 3.34 2.10
p-value 0.331 0.0677 0.717

We acknowledge potential concerns about bias in our results due to the limited number of
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secondhand electric vehicles available in 2019. The high nesting parameter, and consequently

the low substitution between energy types, might partly reflect the constrained supply of green

used cars. We address some of these concerns in Appendix 8. Nevertheless, our estimates

capture preferences for EVs during the energy transition. With this in mind, and consider-

ing that we may underestimate the dynamic evolution of environmental preferences driven by

crowding-in effects (D’Haultfœuille, Durrmeyer, and Février (2016)), these estimation results

can be viewed as conservative.

4.6 Elasticities

Table 4: Mean own-price elasticities per vehicle type in the three specifications

Fuel type Vintage (i) (ii) (iii)

New -12.6 -9.23 -8.18
Gasoline 1-5 -8.07 -5.83 -4.19

6-10 -4.12 -3.01 -4.19
old -2.08 -1.52 -2.12
new -15.5 -10.2 -15.5

EV 1-5 -9.59 -5.58 -9.43
6-10 -5.89 -4.13 -5.86

We present mean own-price elasticities for each vehicle type in Table 4. In average, own-

price elasticities are larger for electric vehicles and decrease with vehicle age. They are also

relatively larger than what we find in the literature, for e.g. D’Haultfœuille, Durrmeyer, and

Février (2016) find a mean own-price elasticity of -4.5 and Nurski and Verboven (2016) find

-3.14. One reason could be that these papers focus on car purchase decisions while ours focus

is on the car fleet.

Table 5: Mean (intra-category) cross-price elasticities per vehicle type in the three specifications.

Fuel type Vintage (i) (ii) (iii)

New 0.0049 0.0692 0.0051
Gasoline 1-5 0.0102 0.1440 0.0108

6-10 0.0023 0.0332 0.0024
old 0.0006 0.0079 0.0006
new 0.0010 0.0147 0.0017

EV 1-5 0.0013 0.0179 0.0069
6-10 0.0001 0.0021 0.0005

Mean cross-price elasticities are presented in Table 5. The intra-category mean cross-price

elasticity represent an aggregate measure of how products within the same category influence

the demand for other products in the same category. For e.g., a 1% increase in the price of new

gasoline leads to an average increase in demand of 0.51% for all new gasoline cars. We find that

the logit model brings the smallest cross-price elasticities. The random coefficient model also
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lead to small cross-price elasticities close to the ones of the simple logit model, with an average

of 0.0049. In line with Grigolon and Verboven (2014), we find that the nested logit model (ii)

brings the largest average cross-price elasticities.

Table 6: Inter-group cross-price elasticities for specification (iii).

Fuel-type 1 Vintage 1 Fuel-type 2 Vintage 2 inter-group cross-price elasticity
Gasoline new EV new 0.00472

EV new Gasoline new 0.00107
Gasoline new EV 1-5 0.00438

EV 1-5 Gasoline new 0.00122
Gasoline new EV 6-10 0.00454

EV 6-10 Gasoline new 0.000176
Gasoline 1-5 EV new 0.0116

EV new Gasoline 1-5 0.00126
Gasoline 1-5 EV 1-5 0.0131

EV 1-5 Gasoline 1-5 0.00173
Gasoline 1-5 EV 6-10 0.0124

EV 6-10 Gasoline 1-5 0.000231
Gasoline 6-10 EV new 0.00250

EV new Gasoline 6-10 0.00118
Gasoline 6-10 EV 1-5 0.00257

EV 1-5 Gasoline 6-10 0.00148
Gasoline 6-10 EV 6-10 0.00254

EV 6-10 Gasoline 6-10 0.000205
Gasoline old EV new 0.000578

EV new Gasoline old 0.00115
Gasoline old EV 1-5 0.000571

EV 1-5 Gasoline old 0.00139
Gasoline old EV 6-10 0.000575

EV 6-10 Gasoline old 0.000195

We present inter-group mean cross-price elasticities in Table 6. This is a measure of how

the increase of the price of a vehicle in one fuel-vintage category affects demand in another

category. Overall, we find that inter-group cross-price elasticities are below 0.01, which is in

line with the literature (Grigolon and Verboven (2014)). Specifically, we find that while the

increase in gasoline vehicles prices have an effect on demand for EVs, the decrease in EV prices

have a very small effect on gasoline demand. For e.g., a 1% increase in Gasoline vehicles of 1-5

years old leads to a increase in 1-5 EV demand of 1.3% while the 1% increase in 1-5 EV leads

to an increase in 1-5 gasoline demand of only 0.1%. This will have important consequences in

terms of policy design given that, when sustainability among technologies is low, policy impacts

are also low.

5 Policy Simulations

This section simulates alternative policy measures. With this purpose we use the preference esti-

mates from model (iii) in Table 3, to predict demand for each product type, and the equilibrium

conditions from the theoretical model in Section 3.
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First we account for the break-even condition in Equation 2. Using this condition, we

determine the marginal costs and scrapping values and report the values in Table 13 of Appendix

8. 25

The second condition is the one in Equation 4, that ensures that equilibrium quantities are

constrained by the existing stock of cars. From this equation, we calibrate the survival rates

γka for each energy k and vintage group a and present results in Table 7.

The last condition is the scrapping condition from Equation 3. Concretely, the simulation

algorithm finds quantities and prices that allows to meet these equilibrium conditions, given

the distribution of horizontal and vertical preferences that we estimated in the previous section.

The simulation method is further described in Appendix 8.5.

Table 7: Fleet parameters γka for gasoline cars and EVs. Parameters are calibrated using fleet
data from 2019. They reflect both the survival rate of each vintage-energy combination as well
as the different sizes of each vintage-energy group.

Gasoline EV

1-5 2.37 1.52
6-10 0.814 0.16
11-20 0.3654 0.014

We define the reference scenario as the equilibrium resulting from 2019 existing policies.

In the first policy counterfactual, we simulate the implementation of a pollution tax on top of

existing policies26 These pollution tax levels are our proxy of a Pigouvian tax, and we will refer

to it as the first-best policy (FB).

In the second set of counterfactuals, we simulate the implementation of different EV subsidy

designs: first, a subsidy on new cars, equal to the pollution harm of new gasoline vehicles.

This allows us to discuss a special case of Proposition 3 where all subsidies are given to new

EVs. Second, we put a subsidy on new and used-cars with subsidy amounts meeting the

pollution harm of the corresponding gasoline vintage. This way, we are interested in discussing

Proposition 2, hence to what extent subsidies on either new EVs or new and used EVs can

replicate the effect of Pigouvian taxes. Therefore we compare the welfare outcomes of these

two subsidy designs with first-best outcomes.

In the following subsections, we first analyze how environmental policies impact the steady-

state fleet. Then, we investigate welfare effects, considering consumer surplus variation, costs

and benefits from fleet renewal, and environmental benefits.

25Note that, differently from the simplified theoretical model with only two vintages, herein we have all the
fleet. For the simulations, we aggregate the 336 product types by fuel type and vintage groups to obtain 8
product types. We observe these aggregated products in all the original 41,173 districts.

26Keep in mind that we consider the 2020 steady-state carbon value from Quinet (2019), which is 54=C/tCO2

and a cost of local pollution ranging from 14=C to 200=C depending on the (gasoline) car’s vintage. Annual external
costs of gasoline cars used in the simulations are reported in Table 2.
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5.1 Impact on the fleet size and composition

Herein, we simulate the policy scenarios and put the resulting stock variations in Table 8.

Table 8: Simulation results: impact of a pollution tax and of different subsidy designs on the
steady-state car fleet. Results are relative quantity variations between the reference scenario
and the policy counterfactuals. In the reference scenario, the outside option size is 0.52

Energy Vintage FB Subsidy new cars Sub new & used EV
new -0.0841 -0.000219 -0.0010

gasoline 1-5 -0.0731 -0.000189 -000887
6-10 -0.03740 -0.000137 -0.000279
above 10 -0.01276 - 0.000191 -0.000791
new 0.0611 0.0762 0.0743

EV 1-5 0.0625 -0.000581 0.137
6-10 0.0616 -0.000429 0.162
above 10 0.0607 -0.000353 0.255

Outside good shares 0.55 0.52 0.52

Results are expressed in terms of relative variation, hence the difference between counterfac-

tual and reference quantities divided by the reference quantities. In each scenario, the outside

option shares (not renting a car) are also given.

5.1.1 Pigouvian tax

In the presence of a Pigouvian tax (first column), the volume of gasoline cars decreases for all

vintages, with relative variations ranging from 1.3% to 8.5%. On the other hand, there is an

increase of about 6% in all EV vintages. The size of the outside option also increase by 6%,

from 0.52 in the reference situation to 0.55 in the presence of a pollution tax. This means that

the decrease in gasoline cars is not fully compensated by an increase in EVs and results in some

demotorization.

5.1.2 Alternative subsidy designs

We find that putting a subsidy on new EVs increases by 7.6% their quantity but has almost

no effect on other products. Although small, the largest negative effect is on used EVs, which

are the closest substitutes. On the other hand, putting a subsidy on both new and used EVs

(last column) increases the market shares of all EV vintages, 7.4% for new EVs to 26% for the

oldest EV group. The effect on gasoline cars increases sliglty compared to the sole subsidy on

new cars but the effect is very small compared to the pollution tax. This is related to the small

cross-price elasticities presented in Table 5 and the clear dislike for EVs found in Table 3.

Finally, both subsidy designs do not affect the outside option, which is good news, as it

means that EV renters are not new consumers that were taking public transportation but

rather gasoline car consumers that switch to EVs.

Before any welfare considerations, we can already see that subsidies are not replicating the

work of the pollution tax. New subsidies alone have almost no effects on gasoline cars, while a
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combination of new and used subsidies allow some progress but still has a very small effect on

gasoline cars. This is consistent with the estimation results and the asymmetry in inter-group

elasticities reported in Table 6.

5.2 Welfare Impacts

Herein, we focus on steady-state welfare. We use a modified version of Equation 3.2 of the two-

period model, that incorporates the logit form of consumer surplus and accounts for additional

vintages for each fuel type.

In the random coefficient logit model, individual consumer surplus is the expected utility

of each consumer’s best car choice (Train 2009). The variation of consumer surplus from a

counterfactual (indices 1) compared to the reference scenario (indices 0) is:

∆E(CSi)) =
1

−αi

(
ln
( J1∑
k=1

exp (δ1k + µ1
ik)

)
− ln

( J0∑
k=1

exp (δ0k + µ0
ik)

))
With CSi the mean consumer surplus, αi the mean price sensitivity in district i.

We report total consumer surplus variation, environmental benefits from avoiding local

and global pollutions, and fleet renewal benefits for each subsidy counterfactual specification,

compared to the first-best scenario in Table 9.27

Table 9: Welfare results under different policy counterfactuals. All results are taken against
first-best (FB) scenario, and are expressed in 2019B=C.

Counterfactual ∆CS* Env. benefits Fleet renewal ∆W
(2019 B=C) (2019 B=C) (2019 B=C) (2019 B=C)

EV subsidies
New 4.59 -0.279 -29.50 -25.5
New+used 4.64 -0.276 -29.2 -25.1

As shown in Table 9, EV subsidies bring large consumer surplus gains compared to the

Pigouvian tax. Indeed, in the presence of a pollution tax, consumers either shift from gasoline

cars to EVs, suffering large horizontal losses, or to the outside option which utility is normalized

to zero. Compared to the first-best policy, subsidies bring negative environmental benefits of

about -280 million euros, with slightly better results for the new-and-used EV subsidy design.

In both designs, subsidies bring new EVs to the fleet but their impact on the removal of gasoline

vehicles from the fleet is very small, leading to large and negative fleet renewal benefits of subsi-

dies compared to the first-best scenario. Overall, the empirical results align with Proposition 2,

indicating that subsidies are less effective than Pigouvian taxes in achieving equivalent welfare

gains when the subsidy amount matches the marginal environmental damage. Moreover, the

finding that outcomes under a new-car subsidy are worse than those under a new-and-used

subsidy is consistent with a specific case of Proposition 3 discussed in the theoretical part.

27We consider that tax revenues are redistributed to consumers through lump-sum transfers.
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6 Concluding remarks

In this paper, we have developed a simple theoretical model of vertical and horizontal differen-

tiation that segments cars by ”EV” and ”gasoline” fuel types as well as by their vintage groups.

The theoretical inclusion of vertical and horizontal preferences represents a significant contribu-

tion, as it challenges the equivalence between Pigouvian taxes and subsidies of equal amounts.

Our main contribution is that implementing subsidies for second-hand EVs is essential during

the transition to net-zero emissions, not for equity but for efficiency reasons. This is because

subsidies for new and used EVs act as complements in achieving optimal policy outcomes.

To quantify the significance of these finding, we conducted estimations using 2019 fleet

data at the district level. We find that, when implementing a pollution tax that accounts

for both local and global emissions from gasoline cars, the consumer surplus losses are not

fully offset by environmental benefits alone. However, fleet renewal benefits enable substantial

and positive welfare gains. Conversely, when subsidies are limited to new EVs, we observe a

significant increase in new EV adoption and a reduction in used EVs as their closest substitutes.

To expand the EV fleet, introducing an additional subsidy for used EVs emerges as a viable

option. However, both subsidy designs brings large welfare losses compared to the first-best

outcome as they have very little effects on the removal of gasoline cars from the fleet.

Our empirical analysis has primarily centered on Propositions 1 to 3 of the theoretical

model, leaving the empirical testing of Proposition 4 as a focus for future research. Notably,

our current estimates reflect a transition to a net-zero equilibrium rather than a true steady

state. Looking ahead, we aim to conduct dynamic simulations that incorporate preference

actualization, further refining the analysis toward a net-zero future
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7 Appendix A

This appendix contains proofs of propositions and lemmas.

7.1 Proof of Proposition 1

Looking at Equation 3.2 we look at the marginal variations provoked by establishing environ-

mental taxes. The proof is divided in two parts.

Part (i). We first show that there are no welfare gains of adjusting either tax away from its

Pigouvian level by a marginal amount. With the aid of Figure 3, note that the net benefit of

marginal increasing τ0 by an arbitrarily small amount equal to ε ≈ 0 is given by (after neglecting

second-order effects)

∆Wτ0 =
ε

2t
(1− θEV )h0 −

ε

2t
(1− θEV ) t(1− 2η′0)

− ε

2t

∫ θEV

θ′G

θ∆sdθ − ε

2t

∫ θEV

θ′G

t(1− 2η̃(θ))dθ +
ε

2t
(θEV − θ′G)(c+ h0)

− ε

∆s
η′1θ

′
G∆s− ε

∆s
η′1(h1 − h0) +

ε

∆s
η′1c

(18)

where η̃(θ) = (t+θ∆s−c−τ0)/2t connects the horizontal and vertical preferences of individuals

indifferent between a new gasoline car and a second-hand EV.

Each line captures gains and losses associated to three different groups of individuals. The

first line corresponds to individuals located on the vertical line that intersects the horizontal

axis at η′0 = 1/2 − τ0/2 and with vertical preferences that go from θ = θEV = c/∆s to θ = 1.

By switching from new gasoline cars to new EVs these individuals contribute with pollution

gains equal to h0 each (the first term in the first line). These individuals also suffer horizontal

losses by moving further away from their preferred (no-intervention) choice (the second term

in the first line). In fact, an individual located at η ≤ 1/2 incurs a disutility of tη when buying

a new gasoline car and t(1− η) when buying a new EV. Hence, switching to the latter entails

an extra utility loss of t(1− 2η). There is an additional effect not reflected in the first line: the

extra costs from additional new EVs entering the market are exactly offset by the savings from

fewer new gasoline cars being sold.

The second line captures the costs and benefits associated with individuals located along

the diagonal, extending from η′1 = 1/2 − τ1/2t to η′0, and from θ′G = (c − τ1 + τ0)/∆s to θEV ,

who switch from new gasoline cars to second-hand EVs in response to the marginal increase in

τ0. The first two terms of the line are losses from the vertical downgrade (from moving from a

new to a second-hand car) and additional horizontal disutility, respectively. These private losses

contrast with the social gains—captured in the last term of the line—from fewer new gasoline

cars entering the market and reduced pollution. Finally, the third line includes welfare changes

associated with individuals with vertical preferences θ′G and horizontal preferences extending

from η = 0 to η = η′1. These changes include losses from vertical downgrades and more pollution
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(first and second terms of the line, respectively), and gains from fewer new gasoline cars entering

the market (last term of the line).

Similarly, the net benefit of marginal increasing τ1 by an arbitrarily small amount equal to

ε ≈ 0 is given by

∆Wτ1 =
ε

∆s
η′1θ

′
G∆s+

ε

∆s
η′1(h1 − h0)−

ε

∆s
η′1c

+
ε

2t
θ′Gh1 −

ε

2t

∫ θ′G

0
t(1− 2η′1)dθ

(19)

The first line includes welfare changes associated with individuals with vertical preferences θ′G
and horizontal preferences extending from η = 0 to η = η′1 who switch from second-hand to new

gasoline cars in response to the marginal increase in τ1. These changes include vertical upgrades

(first term of the line), less pollution (second term), and extra costs from more new gasoline cars

(last term). And the second line includes wlefare changes associated with individuals located

on the vertical line that intersects the horizontal axis at η′1 and with vertical preferences that go

from θ = 0 to θ = θ′G. These changes include less pollution (first term of the line) and horizontal

disutilities (second term). Collecting terms in expressions (18) and (19) and rearranging yields

expressions (8) and (9) in the text. Making τ0 = h0 and τ1 = h1 in (18) and (19) solves the

system ∆Wτ0 = ∆Wτ1 = 0.

Part (ii). Since any arbitrary allocation of cars in Figure 3 requires three price interventions,

we now show that the social planner cannot do better with a third price instrument, such as

a tax (which could be negative) on either new or second-hand EVs. Consider the former. The

net benefit of adding an arbitrarily small tax ε ≈ 0 on new EVs is given by

∆WτEV
0

= − ε

2t
(1− θEV )h0 +

ε

2t
(1− θEV ) t(1− 2η′0)

+
ε

∆s
(1− η′0)c−

ε

∆s
(1− η′0)θEV ∆s

where η′0 = 1/2 − τ0/2 (with τ0 = h0) and θEV = c/∆s. It is easy to see that ∆WτEV
0

= 0.

The same holds if we consider an arbitrarily small tax on second-hand EVs, confirming that

the planner can reach the first-best by relying exclusively on taxes on polluting vehicles.

7.2 Proof of Lemma 1

By contradiction. Suppose that σ∗
0 = σ∗

1. If so, ∆Wσ0 = 0 in (10) leads to σ∗
0 = h0, but

∆Wσ1 = 0 in (11) leads to σ∗
1 = h1; a contradiction since h1 > h0. Suppose then that σ∗

0 > σ∗
1.

If so, ∆Wσ0 = 0 implies that σ∗
0 < h0 (recall that ∆s > c + σ1 − σ0), but ∆Wσ1 = 0 implies

that σ∗
1 > h1 (recall that h0 < t); again, a contradiction since h1 > h0. Therefore, it must

hold that σ∗
0 < σ∗

1. This and ∆Wσ0 = 0 imply that σ∗
0 > h0. On the other hand, σ∗

0 < σ∗
1 and

∆Wσ1 = 0 imply that σ∗
1 < h1, which concludes the proof.
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7.3 Proof of Proposition 2

Following the steps of the proof of Proposition 1 we arrive at expressions (10) and (11) below.

By lowering their rental prices, placing subsidies σ0 and σ1 > σ0 on EVs can certainly take us

to a car allocation similar to that shown in Figure 6.

Figure 6: Subdsidies on new and used EVs in steady state

7.4 Proof of Proposition 3

Let σr
0(σ1) be the value of σ0 that solves ∆Wσ0(σ0, σ1) = 0.

Case (i). For σ1 > σ0 ( depicted in Figure 6) let us first show that dσr
0/dσ1 > 0, where

σr
0(σ1) is obtained from ∆Wσ0(σ0, σ1) = 0 and ∆Wσ0(σ0, σ1) is given by expression (10) in the

main text. We know by assumption that σ1 < t (otherwise there would be no used gasoline

cars in the market) and that (c + σ1 − σ0)/∆s < 1 (otherwise there would be no new EVs in

the market). Given this and the fact that we are in the case where σ1 > σ0, ∆Wσ0(σ0, σ1) = 0

implies that σ0 > h0. Using these inequalities, it is possible to establish that (ε/2t∆s has been

normalized to 1)

∂(∆Wσ0)

∂σ0
= 2σ1 − 4σ0 + h0 − t+ c−∆s < 0

which means that ∆Wσ0(σ0, σ1) crosses the σ0-axis from above. Therefore, to establish that

dσr
0/dσ1 > 0 requires to show that

∂(∆Wσ0)

∂σ1
= t− h0 + 2σ0 > 0

which is indeed the case because t > h1 > h0. Showing that dσr
1/dσ0 > 0 proceeds likewise, so

we omit it.
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Case (ii). For σ0 > σ1 (note that such values would not be optimal as shown in Lemma 1),

is depicted in Figure 4. In this case we have that

∆Wσ0(σ0, σ1) =
ε

2t∆s
(h1 − t− σ0 − σ1)(σ0 − σ1) +

ε

2t∆s
(∆s− c)(h0 − σ0)

and

∆Wσ1(σ0, σ1) =
ε

2t∆s
c(h1 − σ1) +

ε

2t∆s
(h0 − t− σ0 − σ1)(σ1 − σ0)

Using some of the assumptions, in particular that t > h1 > h0, σ0 > σ1, and ∆s > c, it is

immediate that ∂(∆Wσ0)/∂σ0 < 0 and ∂(∆Wσ0)/∂σ1 > 0, which imply that dσr
0/dσ1 > 0.

The same assumptions lead to ∂(∆Wσ1)/∂σ1 < 0 and ∂(∆Wσ1)/∂σ0 > 0, which imply that

dσr
1/dσ0 > 0.

7.5 Proof of Proposition 4

Let σ∗∗
0 (h0) and σ∗

0(h0) be the optimal subsidies for new EVs during the transition and in steady

state, respectively, as a function of h0 ≤ h1. Visual inspection of their first-order conditions

suggests both functions to be strictly concave.28 So, the idea of the proof is to show that σ∗
0(h0)

crosses σ∗∗
0 (h0) from below and only once, at h0 = h1. Showing that σ∗∗

0 (h0) crosses σ∗
0(h0)

at h0 = h1 is immediate from looking at (13) and the system of equations (10) and (11) for

∆Wσ0 = ∆Wσ1 = 0. The unique solution when h0 = h1 is σ∗∗
0 = σ∗

0 = σ∗
1 = h1 = h0.

On the other hand, single crossing from below requires (i) ∂σ∗∗
0 (h0 = h1)/∂h0 < ∂σ∗

0(h0 =

h1)/∂h0; and (ii) ∂2σ∗∗
0 (h0 = h1)/∂h

2
0 < ∂2σ∗

0(h0 = h1)/∂h
2
0 < 0 for all h0 ≤ h1. To show (i),

allow h0 in both (13) and (10) to marginally drop from h1 to h1− εh, with εh arbitrarily small,

and ask what would be the marginal changes in σ0 for the first-order conditions to continue

holding, that is, (13) and ∆Wσ0 = 0 in (10). Denote these marginal changes by ε′σ0
and ε′′σ0

,

respectively. It turns out, after simple manipulation, that

ε′σ0
= ε′′σ0

=
∆s− c

∆s− c+ t+ h1
εh

indicating that both σ∗∗
0 and σ∗

0 adjust downward by the same amount (recall that ∆s > c). But

this is only the direct adjustment. In the case of σ∗
0, there is also an indirect adjustment, as the

drop εh has also a downward impact on σ∗
1. Given the complementarity of (optimal) subsidies

established in Proposition 3, this indirect adjustment shows that σ∗
0 must necessarily fall more

than σ∗∗
0 (to find the actual drop of σ∗

0 requires solving the system of first-order conditions for

σ∗
0 and σ∗

1). Finally, showing (ii) demands a tedious algebraic manipulation and is therefore

omitted.

28In fact, plugging the parameters values following the proposition yield σ∗∗
0 (h0) =

√
3
√
59 + 64h0/8 − 13/8

and σ∗
0(h0) = h0/2 + 3

√
3 + 4h0/8− 5/8
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7.6 Numerical example for Proposition 4

As a preview, we can generate some numbers with our theory illustrating that some magnitudes

can be important. For instance, let ∆s = 4, c = 1, t = 1/2, h1 = 1/4, and h0 = 1/8. These

parameter values ensure that properties (i), (ii) and (iii) hold across all equilibria. Based on

these values, the optimal subsidy for new EVs during the transition phase reaches σ∗∗
0 = 0.15,

which drops somewhat to σ∗
0 = 0.14 in steady state, provided it is combined with an optimal

subsidy for second-hand EVs, set at σ∗
1 = 0.20. However, if the planner neglects this second-

hand subsidy, the optimal subsidy for new EVs should be much lower, not higher—27% lower,

or σr
0(σ1 = 0) = 0.11.
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8 Appendix B

This appendix contains details on the estimation model validity in subsection 8.3, a description

of the simulation algorithm in subsection 8.5, and additional empirical results in subsection 8.4.

8.1 French Feebate description

Figure 7: Evolution of EV incentive policies in France

8.2 Demand models

In specification (ii), Equation 14 reduces to

uij = αpj + βxj +
∑
a

βa1a + ξj + ζ1k=EV + (1− ρ)ϵij

βa is the (vertical) preference for vintage a={below 5, 6-10, above 10} compared to vintage new,

α is the price sensitivity, ξ is the unobserved quality (for e.g. advertising). ζ is the fuel-type-

specific shock, ρ gives the degree of correlation within a fuel-type nest. In our setting, ρ can be

seen as a proxy for horizontal preferences. The nested model is consistent with random utility

maximization for 0 ≤ ρ ≤ 1 (McFadden 1978). ϵij is the consumer specific taste for products. It

is type I extreme value distributed. As a result, the probability of choosing product j conditional

on fuel-type nest k in a given market is

34



sj|k =
exp(

αpj+βxj+
∑

a βa1a+ξj
1−ρ )

exp(Ik)

With

Ik = (1− ρ)ln

(∑
l∈Jk

exp
(αpl + βxl +

∑
a β

a1a + ξl
1− ρ

))
The probability of choosing fuel type k is:

sk =
exp(Ik)

exp(I)

With

I = ln
(
1 + exp(IEV ) + exp(IG)

)
The probability of choosing product j is then:

sj = sj|ksk

The equation that we take to the data is:

ln(sj)− ln(s0) = αpj + βxj +
∑
a

βa1a + ξj + ρ ln(sj|k)

For specification (i) we simply take the case where ρ = 0.

8.3 Validity of the demand models

We use the variables that avoid instrument collinearity, that result in a nesting parameter σ

between zero and one, and that pass the Hansen test. The objective of the test is to assess the

validity of the additional restrictions imposed by the overidentified model. The null hypothesis

H0 is that the instruments are valid. The alternative hypothesis H1 is that the additional re-

strictions due to overidentification, do not hold, indicating model misspecifications. To validate

the specified model, the test needs to have a test statistic close to zero and a large p-value. In

all specifications presented in Table 3, I fail to reject H1, which validates the models.

8.4 Additional empirical results

8.4.1 Estimation results - Nested Logit estimation in 10 income groups

The price coefficient is negative and significant at the 1% level. It seems that consumers find

utility in CO2 emissive cars, but note that this variable also reflects the size and fuel economy

of the car. Looking at vintage preferences, compared to new cars, people dislike older products

and the effect increases as products get older.

We find that price sensitivity is more pronounced in lower-income groups than in higher-

income groups. All things equal, lower-income groups exhibit a higher disutility for used cars
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Table 10: Regression results for the ten income groups. Stars indicate significance levels. *
10% level, ** 5% level and *** 1% level of significance. Nb. Obs: 336 products in 10 income
groups.

Variable Coef. 1 Coef. 2 Coef. 3 Coef. 4 Coef. 5 Coef. 6 Coef. 7 Coef. 8 Coef. 9 Coef. 10

const -2.23*** -2.39*** -2.31*** -2.33*** -2.26*** -2.12*** -2.06*** -1.91*** -1.69*** -1.37***
price -1.31*** -1.29*** -1.29*** -1.30*** -1.28*** -1.26*** -1.25*** -1.22*** -1.17*** -0.99***
power 0.336*** 0.333*** 0.336*** 0.338*** 0.338*** 0.337*** 0.339*** 0.338*** 0.335*** 0.315***
weight -1.95*** -1.88*** -1.89*** -1.87*** -1.91*** -1.94*** -1.97*** -2.02*** -2.10*** -2.20***
fuel costs -0.527*** -0.505*** -0.510*** -0.510*** -0.514*** -0.518*** -0.521*** -0.525*** -0.528*** -0.513***
CO2 3.92*** 3.74*** 3.77*** 3.76*** 3.79*** 3.83*** 3.84*** 3.87*** 3.88*** 3.78***
1-5 -0.795*** -0.787*** -0.792*** -0.794*** -0.777*** -0.767*** -0.755** -0.736** -0.704** -0.600**
6-10 -1.49*** -1.45*** -1.46*** -1.46*** -1.43*** -1.41*** -1.40*** -1.36*** -1.30*** -1.09***
old -1.80*** -1.74*** -1.75*** -1.76*** -1.73*** -1.70*** -1.70*** -1.65*** -1.57*** -1.32***
ρ 0.707*** 0.714*** 0.717*** 0.716*** 0.719*** 0.725*** 0.722*** 0.730*** 0.739*** 0.767***

compared to higher-income groups. The nesting parameter is larger for high-income groups,

suggesting greater resistance to switching from gasoline to electric cars, as well as a lower

likelihood of returning to a gasoline car after owning an EV. Overall, lower-income households

are more sensitive to vertical preferences while higher-income households are more sensitive

to horizontal preferences. It also means that it would be costly to incentivize high-income

households to switch to electric vehicles. These findings calls for targeted measures aimed at

middle- and lower-income households, who are more responsive to price changes and potentially

less attached to their current fuel type group. This is in line with the theory as targeting the

used-car market is a matter of efficiency and not just of equity.

8.4.2 Estimation results - Random Coef. Logit model in other car segments

We estimate the random coefficient model described in the previous sections on other data

samples and present the results in Table 11. Results are consistent with the estimation on

the small segment. In particular, heterogeneity parameters are either similar to the main text

simulation of non-significant.

8.4.3 Preference for green cars on the new car market

We might worry that our results are biased because of the few number of secondhand green

vehicles in 2019. The large nesting parameter, hence the low substitution between energy types

might reflect the lack of green used-car supply. As a validity check, we estimate a nested demand

model restricting the sample to new vehicles (8 products, 2 energy types, and 4 segments). We

use weighted-average list prices as prices in the first specification and the calculated renting

price that accounts for reselling on the used-car market. Results are presented in Table 12.

Both models are validated by the Hansen test. In specification one, the nesting parameter is

larger than in the fleet case and significant at the 10% level while it is smaller but insignificant

in the second specification. This suggests that the correlation of utilities between products of

the same energy type is even larger when only the new car market is considered. However, this

result is to be taken with caution as the two data samples have a different nature. The full
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Table 11: Estimation results for the other three car segments: SUVs, large cars and medium
cars.

Var SUVs Large cars Medium cars
const -5.26*** -7.36*** -5.69***

(0.607) (1.048) (0.792)
price -1.05*** -0.578** -0.583**

(0.187) (0.333) (0.241)
fc -0.081* -0.080 -0.211***

(0.042) (0.050) (0.041)
EV (ref:Gasoline) -7.60*** -4.56*** -9.30***

(2.05) (1.06) (1.28)
1-5 -1.39** 0.150 0.576

(0.685) (1.06) (0.488)
6-10 -2.82*** -1.00 -0.903

(0.693) (1.19) (0.606)
old -4.32*** -1.49 -1.70**

(0.789) (1.35) (0.717)
income*price 0.210*** 0.00012 -0.023

(0.041) (0.065) (0.046)
income*EV 1.95*** 1.02*** 2.23***

(0.491) (0.256) (0.311)
income*new -0.790*** 0.030 -0.004

(0.242) (0.252) (0.117)
Hansen test
Stat 0.696 0.967 0.378
p-value 0.706 0.617 0.828

sample contains the fleet of vehicles in which we assume that consumers rent vehicles each year.

On the other hand, the new vehicle sample represents actual sales in 2019 with sales-weighted

average list prices that consumers face. With these results, we cannot conclude that the large

nesting parameter on energy types is due to the lack of supply of green cars in the fleet.

8.5 Simulations

8.5.1 Simulation Algorithm

In the outer loop, we look for the number of new cars to add to the fleet alongside the vector of

product prices so that the break-even, fleet, and scrapping conditions are met. This is similar

to what is done in Barahona, Gallego, and Montero (2020) but differs slightly because there

are two sets of equilibrium conditions - one for each fuel type - to meet simultaneously instead

of one. Each equilibrium condition is a squared difference. Barahona, Gallego, and Montero

(2020) minimizes an objective function that is the sum of squares to obtain simultaneously the

different equilibrium conditions. Here, we need to minimize two objective functions at the same

time. This brings difficulties because of the small number of EVs. As few EVs are in the 2019

fleet, fleet parameters calibrated with 2019 fleet data might not reflect the dynamics of EV sales

in the future. The solution so far has been to minimize the squared sum of the two objective

functions.
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Table 12: Estimation results with the restricted sample of new cars. Prices are sales-weighted
listed prices for each aggregated product. In specification 2, prices are rental prices, hence
accounting for the used-car market.

Variable coef. t-value coef. t-value
(1) (2)

intercept -13.75** -5.87 -8.64** -4.65
price -3.05* -3.96 -2.21** -5.18
fuel costs 0.21 0.44 0.36 0.56
weight 8.73 2.76
CO2 0.05 2.66 0.04 1.75
σ 0.90* 4.05 0.52 1.41

Hansen test 0.10 0.27
p-value 0.74 0.87

In the inner loop, we choose a policy scenario (no additional intervention, Pigouvian taxes,

new and used electric car subsidies) that determines an initial price vector. Keeping preferences

and other fleet parameters fixed, we calculate predicted quantities in each district using the

structure of the random coefficient logit model. Then we sum over the districts to get the total

volume for each product and compute the counterfactual market shares. These market shares

will then have to meet the equilibrium conditions of the outer loop.

Table 13: Optimal marginal costs and scrapping values in the no intervention equilibrium (in
10,000=C)

gasoline EV

c 3.46 2.92
v 0.0250 0.0998
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