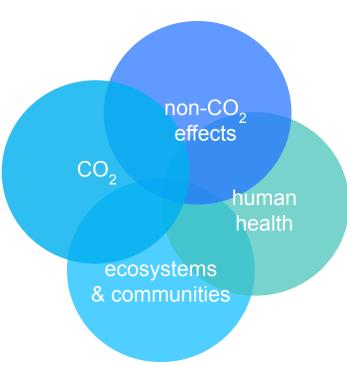
International Aviation: Bringing CORSIA to the Next Level while shaping the global carbon markets and fostering international cooperation

Dr. Pedro PIRIS-CABEZAS, Senior Director Global Transportation & Lead Senior Economist


11th International Conference on Mobility Challenges Paris-Saclay, February 7, 2025

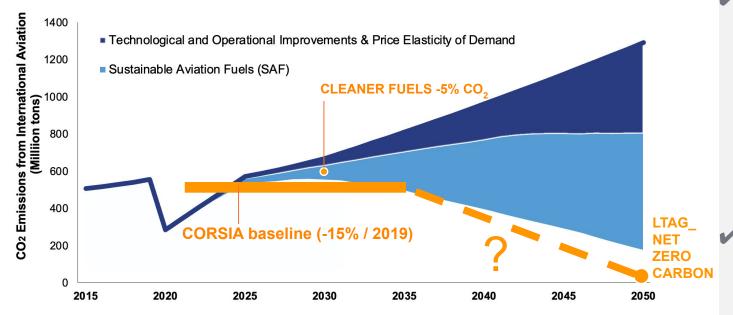
Cleaner skies at a crossroads

- If it were a country, aviation would be a top
 10 CO₂ emitter whose emissions are slated to grow absent intervention.
- Decarbonizing aviation requires improvements in (1) flight operations, (2) aircraft technology, (3) alternative fuels and (4) market-based measures.
- Non-CO₂ effects amplify aviation's role in driving climate change.
- Non-CO₂ toxic pollutants also endanger the health of communities and airport workers.
- Alternative fuels can pose environmental and social risks.

CARBON OFFSETTING AND REDUCTION SCHEME FOR INTERNATIONAL AVIATION (CORSIA)

- Market-based measure for 2021-2035 capping emissions at "2020 level".
- Adopted by the International Civil Aviation Organization (ICAO) in 2016.
- First effective voluntary phase:
 2024-2026/ Mandatory phase begins in 2027.
- Potential to mitigate 1.5 billion tons of CO₂ emissions through 2035.
- Compliance tools_Offsets & alternative fuels, but also in-sector abatement to some degree.

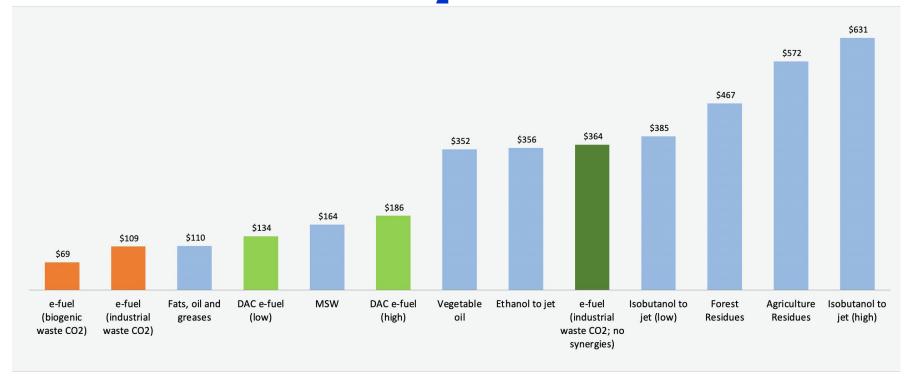
- ✓ Global Monitoring, Verification and Reporting (MRV) system.
- Integrates all elements of the basket of measures.
- CORSIA is poised to shape carbon markets and international cooperation.
- But CORSIA integrity also hinges on alternative fuel claims, which are prone to double counting.


Avoiding double counting of alternative fuels is easy with already existing infrastructure

Involves reconciling the producer and consumer accounting principles.

UNFCCC - PARIS AGREEMENT		
Biennial Transparency Report		
	National Inventory Report (NIR)	Structured Summary "Information necessary to track progress made in implementing and achieving the NDC"
0	IPCC Guidelines for bioenergy	☐ Selected indicators☐ Emissions Balances
	International Bunkers	(ITMOs)

ICAO		
	Transparency Report	
<u>Underlying IC</u>		
Inventory Rep	(consistent with Structured Summary)	
IPCC Guide for bioenergy	Selected indicators for CORSIA Eligible Fuels (LCA)	
International Bunkers	☐ Emissions Balance	


CORSIA and the other ICAO goals

- Need for greater ambition (bilateral agreements / mature route groups?)
- Non-CO₂ climate impacts still missing (first step: EU ETS MRV?)

- Offsets will play a significant role for decades to address residual:
 - Lifecycle emissions from eligible fuels.
 - Non-CO₂ climate impacts.
- Sustainable
 aviation fuels
 (SAF)
 have the potential
 to unlock the
 greatest emission
 reductions.

SAF merit order in the mid 2030s Abatement costs (\$/tCO₂e)

Data source: EDF's "The High-Integrity Sustainable Aviation Fuels Handbook", Pedro Piris-Cabezas (2022)

Electrofuels (e-fuels) link the energy ecosystem

- E-fuels can soon be the most competitive SAF in terms of abatement cost.
- When situated wisely, e-fuels foster mutual benefits between power grid and aviation sector decarbonization.
- Critical demand-side management role:
 - reliance on surplus renewable electricity cuts costs and avoids indirect emissions.
 - o **flexible demand & grid balancing** enable renewable power system expansion.
- Broad range of e-fuel co-products serves other transport modes as well.

Intermittent production of electricity-based synthetic jet fuel as a demand-side management strategy for grid decarbonization

Glenda Chen *, Oleg Lugovoy b, Pedro Piris-Cabezas Anna Stratton d

- a Environmental Defense Fund, Raleigh, NC, USA
- b Independent researcher and consultant, USA
- ^c Environmental Defense Fund, Madrid, Spain (corresponding author, mail to: ppiris@edf.org)
- d ClimateWorks Foundation, Madrid, Spain (while currently affiliated with ClimateWorks Foundation, her contribution to this article is from her time working for Environmental Defense Fund)

Highlights

- E-fuel pathways can unlock significant cost savings in the near- to mid-term and become cost
 competitive with other alternative fuels if they are designed to provide grid balancing services.
- There will be sufficient high-quality surplus renewable electricity to meet most or all of U.S. jet fuel demand in 2050, and potentially a significant fraction of demand in 2030.
- By drawing upon abundant wind power and industrial fermentation waste CO₂, e-SAF synthesized in the Midwest alone could inexpensively deliver a bulk of the 3-billion-gallon target for 2030 under the national SAF Grand Challenge.
- The grid receives substantial benefits in terms of expediting the power sector's energy transition.
- The adoption of e-fuel technology serves not only aviation, but also other hard-to-decarbonize sectors with vested interests in the co-produced long-chain synthetic hydrocarbons.
- Fully capitalizing on synergies across sectors and within the e-fuel production pathway itself is of paramount importance.

Abstract

Variable renewable energy (VRE) is poised to become a cornerstone in the effort to meet economy-wide climate change mitigation targets. However, while transport electrification is advancing for road vehicles, it remains challenging for long-haul aviation. In this hard-to-abate sector, policy and research focus on producing drop-in fuels compatible with existing aircraft technology. Although the alternative jet fuel market is currently dominated by biofuels, diversifying fuel production pathways is crucial for a resilient future. Emerging electricity-based synthetic jet fuels offer promising new routes nearing commercialization. Despite adoption barriers posed by the cost ratio between electrolytic sustainable aviation fuel (e-SAF) and conventional fossil jet fuels, techno-economic assessments involving an integrated power systems perspective suggest potential synergies to both bring down e-SAF production costs and facilitate the energy transition of the power sector towards renewables-based power generation systems. Large VRE capacity necessitates flexible demand management, with interruptible technologies like e-fuel electrolyzers potentially playing a critical role in grid balancing and cost

Particulate matter (PM) pollution from aviation

- Jet fuel regulation can address aviation's environmental injustices in and around airports, while simultaneously contributing to mitigate aviation's non-CO₂ climate impacts.
- Setting jet fuel's aromatic content to as close as possible to 8% can <u>slash PM pollution in the near term</u> by as much as 50 to 70% in some instances.
 - 8% ensures adherence to existing flight safety certifications and fuel quality specifications.
- The **cost** would amount to an <u>increase in jet fuel cost</u> <u>for air carriers well below 2%</u>, or less than 0.4% of their total operating expenses.
- Delivering lower aromatic content jet fuel implies the optimization of existing refinery operations.

Particulate matter pollution from aviation: Effective measures for changing the course of longstanding environmental injustices

Pedro Piris-Cabezas * R. S., Glenda Chen b, Kate Roberts c, Jeremy Proville d

- * Environmental Defense Fund, Madrid, Spain (corresponding author, mail to: ppiris@edf.org)
- b Environmental Defense Fund, Raleigh, NC, USA
- ^c Environmental Defense Fund, San Francisco, CA, USA
- d Environmental Defense Fund, New York, NY, USA

Highlights

- Adopting federal jet fuel regulations to set the aromatic content to as close as possible to 8% can slash
 particulate matter (PM) pollution in the near term -by a much as 50 to 70% in some instances-,
 while ensuring adherence to existing flight safety certifications and fuel quality specifications.
- While alternative fuels hold potential for reducing PM emissions, only cleaner conventional jet fuel
 has the potential to deliver short-term benefits.
- Delivering lower aromatic content jet fuel implies the optimization of existing refinery operations for available jet fuel blend stocks to meet lower aromatic content specifications in the aggregate.
- The cost of setting aromatics to just above 8% in jet fuel would amount to an increase in jet fuel cost for air carriers well below 2%, or less than 0.4% of their total operating expenses, but any potential cost increases should be significantly tempered with fuel efficiency gains.
- Absent swift federal action in the United States, state-level regulatory authorities could implement jet fuel regulations that avoid running afoul of any of the relevant federal statutes or doctrines.
- Jet fuel regulation can address aviation's environmental injustices in and around airports, while simultaneously contributing to improve regional and global air quality, and to mitigate aviation's non-CO₂ climate impacts.
- Geospatial proximity mapping suggests a nationwide pattern of socioeconomic and racial/ethnic disparities in exposure to aircraft pollution in airport-adjacent residential communities across the United States.
- Census estimates from a sample of 64 large- and medium-hub U.S. airports give nationwide totals of 5.8 million and 16 million residents for 10km x 5km and 20km x 5km exposure zones oriented along airport runways to reflect flightpaths.

Abstract

Aircraft gas turbine engines emit substantial quantities of fine particulate matter ($PM_{2.8}$) pollution, notably at sizes in the ultrafine particle (UFP) range smaller than 100 nanometers. In addition to the contributions of $PM_{2.6}$ emissions to degrading regional air quality, impacts of direct exposure in and around airports are an important public health concern. Regulatory controls on $PM_{2.6}$ pollution are crucial to achieving a meaningful and equitable improvement in public health outcomes. Aircraft $PM_{2.6}$ emissions are largely influenced by the aromatic content in jet fuel and engine design. To achieve near-term reductions while maintaining compliance with existing airworthiness certifications, the U.S. government should prioritize the adoption of regulations limiting the aromatic content in jet fuel to 8%, or as close as practicable. This

Page |

December 2024

We can bring CORSIA to the next level by...

- Increasing ambition and aligning with 2050 goals.
- Fostering international cooperation.
- Covering non-CO₂ climate impacts.
- Maximizing public health co-benefits.
- Incentivizing the deployment of e-fuels.
- Ensuring the integrity of alternative fuels.
- Avoiding double counting of alternative fuels.

Thanks

