# Maritime decarbonization pathways: a trade-off between operational and technical measures

Guewen Heslan, PhD Student in Economics Rodica Loisel, Associate professor Corinne Bagoulla, Associate professor University of Nantes / LEMNA Pierre Marty, Associate professor Centrale Nantes / LHEEA

11th International Conference on Mobility Challenges

February 7th



#### ► Introduction

Methodology

▶ Data

Results

2/34



#### Context

- Maritime transport:
  - 80% of merchandise by value<sup>a</sup>
  - 3% of world carbon emissions<sup>b</sup>
- Containerships:
  - 15% of total cargo mass shipped
  - 26% of maritime carbon emissions

#### Challenges :

- Specific sector: "Hard-to-abate"
- IMO policies: EEDI, SEEMP, EEXI<sup>a</sup>
- EU policies: FuelEU, ETS expansion<sup>b</sup>

What are the best strategies for a shipowner faced with a carbon price?

<sup>&</sup>lt;sup>a</sup>OECD. (2022). Ocean shipping and shipbuilding.

<sup>&</sup>lt;sup>b</sup>Faber, J., Hanayama, S., Zhang, S., & Pereda, P. (2021). Fourth imo greenhouse gas study (tech. rep. No. 4). International Maritime Organization. London.

<sup>&</sup>lt;sup>*a*</sup>IMO. (2024). Improving the energy efficiency of ships.

 $<sup>{}^{</sup>b}$ EU Council. (2023). Fueleu maritime initiative: Council adopts new law to decarbonise the maritime sector - consilium.



- Idea: Understand the effect of a market policy such as *carbon price* on shipowners' optimal strategies
- Focus on liner shipping :
  - Routes already established and change little over the year<sup>a</sup>
  - Few price fluctuations

How to decarbonize maritime shipping?<sup>*a*</sup>:

- Operational measures
  - Optimal speed
  - Optimal fleet deployment
  - Optimal route
- Technical measures
  - Energy-saving measures
  - Fuel change
  - CCS

<sup>&</sup>lt;sup>a</sup>Corbett, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. *Transportation Research Part D: Transport and Environment*, 14(8), 593–598. https://doi.org/10.1016/j.trd.2009.08.005

<sup>&</sup>lt;sup>a</sup>Faber, J., Wang, H., Nelissen, D., Russell, B., & St Amand, D. (2011). Marginal abatement costs and cost effectiveness of energy-efficiency measures [MARINE ENVIRONMENT PROTECTION COMMITTEE, 6 2nd session, Agenda item 5, MEPC 62/INF.7, 8 April 2011, ENGLISH ONLY]. Faber, J., Hanayama, S., Zhang, S., & Pereda, P. (2021). Fourth imo greenhouse gas study (tech. rep. No. 4). International Maritime Organization. London.



## Maritime shipping & carbon policies

- Market-based measures
  - K. Wang et al., 2015
  - Psaraftis et al., 2021
  - Cariou et al., 2023

#### LSFD

- General :
  - Perakis and Jaramillo, 1991
  - Jaramillo and Perakis, 1991
  - S. Wang and Meng, 2017
- Environmental applications :
  - Kontovas, 2014
  - Zhu et al., 2018
  - Gu et al., 2019

#### **Fleet adaptation**

#### Slow Steaming

- Corbett et al., 2009
- Lindstad et al., 2011
- Norlund and Gribkovskaia, 2013
- Woo and Moon, 2014
- Cepeda et al., 2017
- Taskar and Andersen, 2020
- Technological measures
  - Faber et al., 2011
  - Ren and Lützen, 2015
  - Yuan et al., 2016
  - Zhen et al., 2020
  - Schwartz et al., 2020
  - Irena et al., 2021

### **Problem Description and Contribution**

1 Introduction

#### **Problem Description**

**Operational Strategies** 

- Speed management, fleet deployment
- Port congestion
- Speed reduction  $\longrightarrow$  fleet expansion

#### **Technical Strategies**

- Tech maturity.
- High upfront and operational costs.

#### Contribution

- Existing research: fleet operations, technical strategies
- Trade-offs between these strategies under carbon pricing need exploration
- This study examines operational and technical strategy trade-offs within carbon market contexts.

#### Why is This Important?

Understanding the efficiency and temporal trade-off between operational and technical measures to make optimal policies 6/34



## Table of contents

Introduction

Methodology

▶ Data

Results



- Liner shipping company
  - Multiple established route
  - Vessels of different types and homogenous in type
  - Exogenous capital interest rate
  - Exogenous pair-port demand
- Weekly cost minimization of firm
  - Optimal speed
  - Optimal number of vessels
  - Optimal flow of container
  - Optimal energy saving measures mix
  - Optimal fuel mix

- $r \in \mathcal{R}$ : routes set
- $i \in \mathcal{I}_r$ : route-specific leg set with  $\mathcal{I}_r = \{0, 1, 2, ..., N_r\}$  and  $N_r \in \mathbb{N}^*$  the number of port-calls by route
- $p, o, d \in \mathcal{P}$ : ports set
- $v \in \mathcal{V}$ : vessel types set with  $\mathcal{V}_r \subset \mathcal{V}$
- $m \in \mathcal{M}$ : energy-efficiency measures set with  $\mathcal{M}_{v} \subset \mathcal{M}$
- $f\in \mathcal{F}$ : fuel set with  $\mathcal{F}_{v}\subset \mathcal{F}$



#### Inputs

Vessel costs: Weekly operating costs, Port-entrance fee Fleet: Energy efficiency, Capacity, Vessels price, Min/max speed Routes: Distances, Time in ports Demand Innovation: Measures list, Abatement potential, Non-recurring & recurring cost

#### Cost minimization

- Voyage cost (fuel, carbon)
- Operating cost (crew, maintenance)
- Measure
   recurring cost
- Capital cost
   (vessel, measures)

#### $\uparrow$

Simulation parameters

Carbon price

#### Outputs

- Optimal speed (by route in knot)
- Optimal fleet mix (by route and vessel type)
- Optimal measures mix (by route, measure and vessel type)
- Carbon emissions (for the entire firm)



$$\min_{\mathcal{X}^*} \quad C^V + C^O + C^{CH} + C^M + C^K \tag{1}$$

**Objective:** Find optimal decision vectors :

- $\mathcal{X}_1^*$  (2): speed, number of vessels, fuel mix and measures
- $\mathcal{X}_2^*$  (3): cargo flow

$$\mathcal{X}_1^* = \left\{ s_r^*, m_{r,v}^*, m_{r,v,f,m}^{M}^*, m_{r,v,f}^{F}^* | r \in \mathcal{R}; v \in \mathcal{V}_r; m \in \mathcal{M}_v; f \in \mathcal{F}_v \right\}$$
(2)

$$\mathcal{X}_{2}^{*} = \{ lo_{o,r,v,i}^{*}, di_{o,r,v,i}^{*}, fl_{o,r,v,i}^{*} | o \in \mathcal{P}; r \in \mathcal{R}; v \in \mathcal{V}_{r}; i \in \mathcal{I}_{r} \}$$

$$(3)$$



We employ an "origin-link-based fleet deployment model"<sup>12</sup>

- The demand is set between **2 ports**:  $o, d \in \mathcal{P}$
- Through cost minimisation, the model gives optimal path

Equation (4) gives the equilibrium between fulfilled demand  $D_{o,d}$  and cargo flow.

$$\sum_{r \in \mathcal{R}} \sum_{\substack{i \in \mathcal{I}_r \\ p_{r,i} = d}} (lo_{o,r,i} - di_{o,r,i}) = D_{o,d} \qquad d \neq o, \forall (o,d) \in \mathcal{W}$$
(4)

<sup>&</sup>lt;sup>1</sup>Wang, S., & Meng, Q. (2017). Container liner fleet deployment: A systematic overview. *Transportation Research Part C: Emerging Technologies*, 77, 389–404. https://doi.org/10.1016/j.trc.2017.02.010

<sup>&</sup>lt;sup>2</sup>Herrera Rodriguez, M., Agrell, P. J., Manrique-de-Lara-Peñate, C., & Trujillo, L. (2022). A multi-criteria fleet deployment model for cost, time and environmental impact. *International Journal of Production Economics*, 243, 108325. https://doi.org/10.1016/j.ijpe.2021.108325



 $t_{r,i}^{tot}$ : total time for a leg *i* on the route *r* (5)

$$t_{r,i}^{tot} = t_{r,i}^{sea} + t_{r,i}^{man} + t_{r,i}^{ber} + t_{r,i}^{canal}$$
 (5)

 $t_{r,i}^{sea}$ : time at sea, depends on distance and speed (6)

$$t_{r,i}^{sea} = rac{d_{r,i}}{s_r}$$
 (6)

Manoeuvring time  $t_{r,i}^{man}$  and Canal time  $t_{r,i}^{canal}$  depends on data.

Berthing time  $t_{r,i}^{ber}$  use cargo moved and berthing time parameter  $tp_{v}^{ber}$  (7)

$$t_{r,i}^{ber} = \max_{v} \left( \sum_{o \in \mathcal{P}} \left[ lo_{o,r,v,i} + di_{o,r,v,i} \right] tp_{v}^{ber} \right)$$
(7)

Maintenance of a weekly service (8).

$$168*m_r^R=\sum_{i\in\mathcal{I}_r}t_{r,i}^{tot}$$
 (8)

## Fuel consumption: Main engine

We consider a cubic law<sup>*ab*</sup> using:

- Sea margin (Sea conditions effect) %
- Specific fuel consumption g/kWh
- Main engine power kW
- Speed knots
- Design speed knots

We consider SFC as a function of load (9) and load as a function of speed and design speed (10):

$$SFC_{r,v,f} = SFC(Load_{r,v})$$
 (9)

$$Load_{r,v} = \left(rac{s_r}{s_v^{Design}}
ight)^3$$
 (10)

Cubic law is defined as (11):

$$fc_{r,v,f} = sm*SFC_{r,i,v,f}*P_v^{me}*\left(rac{s_r}{s_v^D}
ight)^3*t_{r,i}^{sea}$$
 (11)

<sup>&</sup>lt;sup>a</sup>Notteboom, T., & Cariou, P. (2009).Fuel surcharge practices of container shipping lines: Is it about cost recovery or revenue-making. 24–26.

<sup>&</sup>lt;sup>b</sup>Corbett, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. *Transportation Research Part D: Transport and Environment*, 14(8), 593–598. https://doi.org/10.1016/j.trd.2009.08.005

## Fuel consumption: Other engines and total

Auxiliary engines and boiler engines fuel consumption are time linear<sup>3</sup> (12):

$$fc_{r,i,v,f}^{oe} = t_{r,i}^{sea} c p_{v,f}^{sea} + t_{r,i}^{man} c p_{v,f}^{man} + t_{r,i}^{ber} c p_{v,f}^{ber}$$
(12)

**Total fuel cost** for a vessel using fuel f (13):

$$C_{r,v,f}^{fc} = \sum_{i \in \mathcal{I}_r} \left[ fc_{r,i,v,f}^{me} \left( p_f^{Fme} + \varepsilon_f^{me} p^C \right) + fc_{r,i,v,f}^{oe} \left( p_f^{Foe} + \varepsilon_f^{oe} p^C \right) \right]$$
(13)

<sup>&</sup>lt;sup>3</sup>Cariou, P., Parola, F., & Notteboom, T. (2019). Towards low carbon global supply chains: A multi-trade analysis of co2 emission reductions in container shipping. International Journal of Production Economics, 208, 17–28. https://doi.org/10.1016/j.ijpe.2018.11.016

## Carbon abatement measures

Energy-saving measures<sup>*ab*</sup>:

- $m_{r,v,f,m}^M$ : number of vessels applying m
- $\tau^M_{\nu,m}$ : carbon abatement potential for measure m on vessel  $\nu$
- Some measures are not simultaneously applicable<sup>b</sup> (14, 15)

To estimate carbon emissions reduction : **geometric average** (16) weighted by the **share of vessels applying this measure** (17)

$$\sum_{m \in \Theta_n} m^M_{r,\nu,f,m} \le m^F_{r,\nu,f} \tag{14}$$

$$\forall n \neq m, \Theta_n, \Theta_m \subseteq \mathcal{M}, \Theta_n \cap \Theta_m = \emptyset$$
 (15)

$$\prod_{m \in \mathcal{M}_{\nu}} \left(1 - \tau^{M}_{\nu,m}\right)^{x^{M}_{r,\nu,f,m}}$$
(16)

$$x_{r,v,f,m}^{M} = \frac{m_{r,v,f,m}^{M}}{m_{r,v,f}^{E}}$$
(17)

<sup>&</sup>lt;sup>a</sup>Faber, J., Wang, H., Nelissen, D., Russell, B., & St Amand, D. (2011). Marginal abatement costs and cost effectiveness of energy-efficiency measures [MARINE ENVIRONMENT PROTECTION COMMITTEE, 62nd session, Agenda item 5, MEPC 62/INF7, 8 April 2011, ENGLISH ONLY].

<sup>&</sup>lt;sup>b</sup> Irena, K., Ernst, W., & Alexandros, C. G. (2021).The cost-effectiveness of co2 mitigation measures for the decarbonisation of shipping. the case study of a globally operating ship-management company. *Journal of Cleaner Production*, 376, 128094. https://doi.org/10.1016/j.jclepro.2021.128094



We consider  $m_{r,v,f}^F$  the number of vessels v using fuel f with (18)

$$\sum_{f\in\mathcal{F}}m_{r,\nu,f}^F=m_{r,\nu} \tag{18}$$

We have fuel-specific parameters for Main Engine (ME) and Other Engines (OE) with:

- $cp_{y,f}^a$ : OE consumption parameter for activity *a* using fuel *f*
- $p_f^{Fme}$ ,  $p_f^{Foe}$ : ME and OE fuel price (different if dual-fuel)
- $\varepsilon_{f}^{me}$ ,  $\varepsilon_{f}^{oe}$ : ME and OE emission factor



Total annual voyage cost includes emission reduction from measures, vessel-specific parameters, fuel and carbon cost, canal fee  $c_{r,v}^{canal}$  and port entrance fee  $c_v^{entr}$  (19)

$$\mathcal{C}^{V} = \sum_{r \in \mathcal{R}} \sum_{\nu \in \mathcal{V}_{r}} x_{r,\nu}^{V} \left( \sum_{f \in \mathcal{F}_{\nu}} x_{r,\nu,f}^{F} \left[ \left( \prod_{m \in \mathcal{M}_{\nu}} \left( 1 - \tau_{\nu,m}^{M} \right)^{x_{r,\nu,f,m}^{M}} \right) C_{r,\nu,f}^{fc} \right] + c_{r,\nu}^{canal} + N_{r} c_{\nu}^{entr} \right)$$
(19)



Weekly operational cost (20), measure recurring cost  $(21)^4$ .

$$C^{O} = \sum_{r \in \mathcal{R}} \sum_{v \in \mathcal{V}_{r}} m_{r,v} c_{v}^{opr}$$
(20)

$$C^{M} = \sum_{r \in \mathcal{R}} \sum_{\nu \in \mathcal{V}_{r}} \sum_{f \in \mathcal{F}_{\nu}} \sum_{m \in \mathcal{M}_{\nu}} m_{r,\nu,f,m}^{M} c_{\nu,m}^{M}$$
(21)

<sup>&</sup>lt;sup>4</sup>Faber, J., Hanayama, S., Zhang, S., & Pereda, P. (2021). Fourth imo greenhouse gas study (tech. rep. No. 4). International Maritime Organization. London.



We consider annualized capital cost<sup>56</sup> using capital interest rate  $r^{K}$  and life expectancy n divided by the number of week in a year (22)

$$\mathcal{C}^{K^V} = \sum_{r \in \mathcal{R}} \sum_{v \in \mathcal{V}_r} m_{r,v} p_v^V rac{r^K}{1 - (1 + r^K)^{-n_v^V}} * rac{1}{52.1429}$$

(22)

We use the same method for vessel, fuel and measures investment

<sup>&</sup>lt;sup>5</sup>Faber, J., Wang, H., Nelissen, D., Russell, B., & St Amand, D. (2011). Marginal abatement costs and cost effectiveness of energy-efficiency measures [MARINE ENVIRONMENT PROTECTION COMMITTEE, 62nd session, Agenda item 5, MEPC 62/INF.7, 8 April 2011, ENGLISH ONLY].

<sup>&</sup>lt;sup>6</sup>Faber, J., Hanayama, S., Zhang, S., & Pereda, P. (2021). Fourth imo greenhouse gas study (tech. rep. No. 4). International Maritime Organization. London.



► Introduction

Methodology

Data

Results

20/34



- 6 CMA CGM routes (times, ships, ports via cma-cgm.fr, distance via sea-route.com)
- Single type of vessels accepted by route

|   | Route | Duration     | Vessels | Port  | Vessels               |
|---|-------|--------------|---------|-------|-----------------------|
|   |       | in days      | number  | calls | type                  |
| - | r     | $TO_r^{tot}$ | $m_v^0$ | $N_r$ | $v \in \mathcal{V}_r$ |
|   | FAL1  | 98           | 14      | 12    | Large                 |
|   | FAL3  | 84           | 14      | 11    | Large                 |
|   | EPIC  | 63           | 13      | 15    | Medium                |
|   | BEX   | 70           | 14      | 14    | Medium                |
|   | BEX2  | 70           | 11      | 12    | Small                 |
|   | MEX   | 91           | 15      | 17    | Large                 |

Table: Route characteristics





Figure: French Asia Line 1 route (late 2023)



- Base fleet: 81 vessels
- 3 types : small, medium , large

Operational cost, port entrance fee, berthing time and cost from Herrera Rodriguez et al., 2022 in 2024US\$. vessel price from VesselsLink, 2024

| Vessel type | Capacity         | Operating cost | Port-entrance fee | Bething time   | Berthing cost | Price   |
|-------------|------------------|----------------|-------------------|----------------|---------------|---------|
|             | TEU              | \$M/year       | \$/port calls     | hour/TEU       | \$/hour       | \$M     |
| v           | cap <sub>v</sub> | $c_v^{opr}$    | $c_v^{entr}$      | $tp_{v}^{ber}$ | $c_v^{ber}$   | $p_v^V$ |
| Small       | 8000             | 4.79           | 10,373            | 0.008          | 2518.95       | 120     |
| Medium      | 12000            | 6.29           | 13,831            | 0.007          | 4678.05       | 170     |
| Large       | 18000            | 7.79           | 18,442            | 0.006          | 5877.55       | 210     |

Table: Cost data by vessel type



We consider 6 types of fuel:

- Very Low Sulfur Fuel Oil (VLSFO): Used as a base fuel, common in maritime shipping.
- Methanol (MeOH): A lower carbon fuel option with a moderate emission factor.
- Dual Fuel Liquified Natural Gas Otto Method (LNG-Otto): Utilizes pre-mixed LNG and air, ignited by a spark or small diesel pilot.
- Dual Fuel Liquified Natural Gas Diesel Method (LNG-Diesel): Injects LNG at high pressure with compression ignition.
- Liquified Natural Gas Lean Burn Spark-Ignited (LBSI): Operates on a lean air-fuel mixture.
- Hydrogen Internal Combustion Engine (H2-ICE): Zero-carbon option

| Fuel Type  | ME emission factor     | OE emission factor     | ME fuel price | OE fuel price |  |
|------------|------------------------|------------------------|---------------|---------------|--|
|            | $g^{CO_2}/g^{fuel}$    | $g^{CO_2}/g^{fuel}$    | \$2024/mt     | \$2024/mt     |  |
| f          | $\varepsilon_{f}^{me}$ | $\varepsilon_{f}^{oe}$ | $p_f^{Fme}$   | $p_f^{Foe}$   |  |
| VLSFO      | 3.114                  | 3.114                  | 554.0         | 554.0         |  |
| MeOH       | 4.375                  | 4.375                  | 340.0         | 340.0         |  |
| LNG-Otto   | 2.752                  | 2.750                  | 668.5         | 668.0         |  |
| LNG-Diesel | 2.769                  | 2.750                  | 671.7         | 668.0         |  |
| LBSI       | 2.750                  | 2.750                  | 668.0         | 668.0         |  |
| H2-ICE     | 0.000                  | 0.000                  | 4000.0        | 4000.0        |  |

Table: Emission factor and fuel price by fuel type andengine type

#### Measures 3 Data

| Groups                                | Abatement technologies                                                                                                      | 'n            | m                        |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|
| Group 1 :<br>Main engine improvements | Group 1 : Main Engine Tuning<br>ain engine improvements Electronic agning control                                           |               | met<br>cr                |
| Group 2 :<br>Auxiliary systems        | Frequency converters<br>Speed control of pumps and fans                                                                     | $\Theta_2$    | fc<br>scpf               |
| Group 3                               | Steam plant operation improvements                                                                                          | $\Theta_3$    | spoi                     |
| Group 4 :<br>Waste heat recovery      | Waste heat recovery<br>Exhaust gas boilers on auxiliary engines                                                             | $\Theta_4$    | whr<br>egbae             |
| Group 5 :<br>Propeller improvements   | Propeller-rudder upgrade<br>Propeller upgrade (nozzle, tip winglet)<br>Propeller boss cap fins<br>Contra-rotating propeller | $\Theta_5$    | pru<br>pu<br>pbcf<br>crp |
| Group 6 :<br>Propeller maintenance    | Propeller performance monitoring<br>Propeller polishing                                                                     | $\Theta_6$    | ррт<br>pp                |
| Group 7                               | Air lubrication                                                                                                             | $\Theta_7$    | al                       |
| Group 8                               | Low-friction hull coating                                                                                                   | $\Theta_8$    | lfhc                     |
| Group 9 :<br>Hull maintenance         | Hull performance monitoring<br>Hull brushing<br>Hull hydro-blasting<br>Dry-dock full blast                                  | $\Theta_9$    | hpm<br>hb<br>hhb<br>ddfb |
| Group 10                              | Optimization water flow hull openings                                                                                       | $\Theta_{10}$ | owfho                    |
| Group 11                              | Super light ship                                                                                                            | $\Theta_{11}$ | sls                      |
| Group 12                              | Reduced auxiliary power demand (low energy lighting etc.)                                                                   | $\Theta_{12}$ | rapd                     |

Table: Energy savings technologies groups and index



- Data Availability: Specific demand data for each port pair was not available.
- Approach Taken:
  - Utilized round-trip duration provided by CMA CGM and base fleet data.
  - Assumed an average operational speed of 16.5 knots for each route.
- Methodology:
  - Formulated a maximization model for total demand over a week.
  - Aligned demand per port pair with typical vessel operations.
  - Ensured the calculated demand was consistent with operational constraints.
- Objective Function:
  - Maximized total annual demand while maintaining vessel speed and fleet composition.



Introduction

Methodology

▶ Data

#### ► Results

27/34



#### Solver Used

- GAMS software with the Standard Branch and Bound (SBB) solver.
- Solved using a Mixed Integer Non-Linear Programming approach.

#### Table: Scenario list

| BASE  | No energy-saving measures, no fuel                                         |
|-------|----------------------------------------------------------------------------|
| OF    | Only alternative fuels                                                     |
| MAT_1 | Energy-saving measures and fuels already available (Maturity = 1)          |
| MAT_2 | Energy-saving measures and fuels available in 5 years (Maturity $\leq$ 2)  |
| MAT_3 | Energy-saving measures and fuels available in 10 years (Maturity $\leq$ 3) |
| MAT_4 | Energy-saving measures and fuels available in 20 years (Maturity $\leq$ 4) |



#### Base and MAT\_1 Scenario Comparison

Figure: Average speed in knots in BASE and MAT\_1 scenarios

Figure: Average investment in energy-saving measures by vessel in MAT\_1 scenario

- Between BASE and MAT\_1 scenarios, average speed difference is 1.44 knots (14% decrease).
- The MAT\_1 scenario shows that energy-saving investments start at \$0 carbon price.
- Investment in measures grows by \$108k per dollar of carbon price, with a slowdown between \$150 and \$400 carbon 29/34 price.

## Investment by Vessel Type in MAT\_1 Scenario



Figure: Investment in energy-saving measures by vessel type in MAT\_1 scenario

- Larger vessels attract higher investments due to high fuel consumption and high investment cost
- $\bullet\,$  This preference for larger vessels is evident in fleet expansion and investment trends.  $_{30/34}$

## Alternative Fuels in OF Scenario



Figure: Investment in alternative fuels by vessel type in OF scenario

Figure: Speed by route in OF scenario

- In the OF scenario, alternative fuels are adopted at carbon prices \$300/tCO2 and higher.
- LNG and hydrogen are the first alternative fuels adopted, with larger vessels transitioning first.
- 31/34 Routes with alternative-fuel ships show higher speeds than those with high-emission fuels.

## Investment in Alternative Fuels in MAT\_2-MAT\_4 Scenarios



Figure: Average investment in alternative fuel for a single vessel in each scenario

- Investment in alternative fuels intensifies with the maturity of energy-saving measures.
- In MAT\_3, investment in energy-saving measures limits the transition to alternative fuels.
- The threshold for fuel adoption rises to \$500/tCO2 when energy-saving measures are in place.

32/34

## Carbon Emissions in Different Scenarios



Figure: Average GHG emissions by vessel in each scenario

- The adoption of hydrogen results in zero carbon emissions in the MAT\_4 scenario.
- While alternative fuels reduce emissions, their impact is limited until the most mature fuels (e.g., hydrogen) are adopted.

4 Results

Thank you for your attention !

#### References

- Cariou, P., Halim, R. A., & Rickard, B. J. (2023).Ship-owner response to carbon taxes: Industry and environmental implications. *Ecological Economics*, 212, 107917. https://doi.org/10.1016/j.ecolecon.2023.107917
- Cariou, P., Parola, F., & Notteboom, T. (2019).Towards low carbon global supply chains: A multi-trade analysis of co2 emission reductions in container shipping. *International Journal of Production Economics*, 208, 17–28. https://doi.org/10.1016/j.ijpe.2018.11.016
- Cepeda, M. A. F., Assis, L. F., Marujo, L. G., & Caprace, J.-D. (2017).Effects of slow steaming strategies on a ship fleet. *Marine Systems & Ocean Technology*, 12(3), 178–186. https://doi.org/10.1007/s40868-017-0033-3
- Corbett, J. J., Wang, H., & Winebrake, J. J. (2009). The effectiveness and costs of speed reductions on emissions from international shipping. *Transportation Research*

*Part D: Transport and Environment*, 14(8), 593–598. https://doi.org/10.1016/j.trd.2009.08.005

- **EU Council. (2023).** Fueleu maritime initiative: Council adopts new law to decarbonise the maritime sector consilium.
- Faber, J., Hanayama, S., Zhang, S., & Pereda, P. (2021). Fourth imo greenhouse gas study (tech. rep. No. 4). International Maritime Organization. London.
- Faber, J., Wang, H., Nelissen, D., Russell, B., & St Amand, D. (2011). Marginal abatement costs and cost effectiveness of energy-efficiency measures [MARINE ENVIRONMENT PROTECTION COMMITTEE, 62nd session, Agenda item 5, MEPC 62/INF.7, 8 April 2011, ENGLISH ONLY].
- Gu, Y., Wallace, S. W., & Wang, X. (2019).Can an emission trading scheme really reduce co2 emissions in the short term? evidence from a maritime fleet composition and

deployment model. *Transportation Research Part D: Transport and Environment*, 74, 318–338. https://doi.org/10.1016/j.trd.2019.08.009

- Herrera Rodriguez, M., Agrell, P. J., Manrique-de-Lara-Peñate, C., & Trujillo, L. (2022). Multi-criteria fleet deployment model for cost, time and environmental impact. International Journal of Production Economics, 243, 108325. https://doi.org/10.1016/i.jipe.2021.108325
  - IMO. (2024). Improving the energy efficiency of ships.
  - Irena, K., Ernst, W., & Alexandros, C. G. (2021). The cost-effectiveness of co2 mitigation measures for the decarbonisation of shipping. the case study of a globally operating ship-management company. *Journal of Cleaner Production*, 316, 128094. https://doi.org/10.1016/j.jclepro.2021.128094

Jaramillo, D. I., & Perakis, A. N. (1991). Fleet deployment optimization for liner shipping part 2. implementation and results. Maritime Policy & Management, 18(4), 235-262. https://doi.org/10.1080/03088839100000028 Kontovas, C. A. (2014). The green ship routing and scheduling problem (gsrsp): A conceptual approach. Transportation Research Part D: Transport and Environment, 31, 61-69, https://doi.org/10.1016/i.trd.2014.05.014 Lindstad, H., Asbjørnslett, B. E., & Strømman, A. H. (2011). Reductions in greenhouse gas emissions and cost by shipping at lower speeds. *Energy Policy*, 39(6), 3456–3464. https://doi.org/10.1016/j.enpol.2011.03.044 Norlund, E. K., & Gribkovskaia, I. (2013). Reducing emissions through speed optimization in supply vessel operations. Transportation Research Part D: Transport and Environment, 23, 105-113, https://doi.org/10.1016/i.trd.2013.04.007

- Notteboom, T., & Cariou, P. (2009).Fuel surcharge practices of container shipping lines: Is it about cost recovery or revenue-making. 24–26.
- OECD. (2022). Ocean shipping and shipbuilding.
- Perakis, A. N., & Jaramillo, D. I. (1991).Fleet deployment optimization for liner shipping part
   1. background, problem formulation and solution approaches. *Maritime Policy & Management*, 18(3), 183–200. https://doi.org/10.1080/03088839100000022
- Psaraftis, H. N., Zis, T., & Lagouvardou, S. (2021). A comparative evaluation of market based measures for shipping decarbonization. *Maritime Transport Research*, 2, 100019. https://doi.org/10.1016/j.martra.2021.100019
- Ren, J., & Lützen, M. (2015).Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties. *Transportation Research Part D: Transport and Environment*, 40, 43–60. https://doi.org/10.1016/j.trd.2015.07.012

Schwartz, H., Gustafsson, M., & Spohr, J. (2020). Emission abatement in shipping – is it possible to reduce carbon dioxide emissions profitably? Journal of Cleaner Production, 254, 120069. https://doi.org/10.1016/j.jclepro.2020.120069 Taskar, B., & Andersen, P. (2020). Benefit of speed reduction for ships in different weather conditions. Transportation Research Part D: Transport and Environment, 85, 102337. https://doi.org/10.1016/i.trd.2020.102337 VesselsLink. (2024). Prices of new container ships increased by more than 50% vear-on-vear (2024). VesselsLink. https://vesselslink.com/blogs/news/prices-of-new-container-ships-increased-bymore-than-50-year-on-year-2024?utm\_source=chatgpt.com Wang, K., Fu, X., & Luo, M. (2015). Modeling the impacts of alternative emission trading schemes on international shipping. Transportation Research Part A: Policy and Practice, 77, 35-49, https://doi.org/10.1016/i.tra.2015.04.006

Wang, S., & Meng, Q. (2017).Container liner fleet deployment: A systematic overview. *Transportation Research Part C: Emerging Technologies*, 77, 389–404. https://doi.org/10.1016/j.trc.2017.02.010

- Woo, J.-K., & Moon, D. S.-H. (2014). The effects of slow steaming on the environmental performance in liner shipping. *Maritime Policy & Management*, 41(2), 176–191. https://doi.org/10.1080/03088839.2013.819131
- Yuan, J., Ng, S. H., & Sou, W. S. (2016).Uncertainty quantification of co2 emission reduction for maritime shipping. *Energy Policy*, 88, 113–130. https://doi.org/10.1016/j.enpol.2015.10.020
- Zhen, L., Wu, Y., Wang, S., & Laporte, G. (2020).Green technology adoption for fleet deployment in a shipping network. *Transportation Research Part B: Methodological*, 139, 388–410. https://doi.org/10.1016/j.trb.2020.06.004

Zhu, M., Yuen, K. F., Ge, J. W., & Li, K. X. (2018).Impact of maritime emissions trading system on fleet deployment and mitigation of co2 emission. *Transportation Research Part D: Transport and Environment*, 62, 474–488. https://doi.org/10.1016/j.trd.2018.03.016