Technology Neutrality vs. Policy Discrimination: Optimizing Support for Competing Green Technologies

Albin KASSER¹, Guy MEUNIER¹

¹ Université Paris-Saclay, INRAE, Paris-Saclay Applied Economics

May 25, 2025

Introduction

Kasser & Meunier (Paris-Saclay)

Competing Green Technologies

May 25, 2025

900

Context:

Competing Green Technologies: Hydrogen Supply and Demand

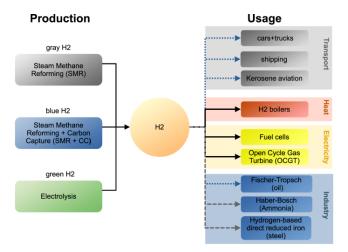


Figure: Hydrogen Production and Demand (Zeyen 2022)

Kasser & Meunier (Paris-Saclay)

Competing Green Technologies

Э

SQC

イロト イポト イヨト イヨト

Motivation: Should Climate Policy be Technology-Neutral?

- **Context:** Many low-carbon technologies remain costly, immature, and face high uncertainty.
 - Particularly true in hard-to-abate sectors (e.g. industry, transport).
 - Multiple competing options may serve similar decarbonization goals.
- Focus on Carbon Contract for Differences: Forward carbon price to support clean investments, with different goals:
 - Correcting for a too-low expected EU ETS price
 - Derisking revenue streams exposed to carbon price volatility.
 - Supporting investment in less mature technologies whose risk profile translates into high capital costs.
- Core question: Should support remain technology-neutral or be technology-specific?
 - Cost structures and financing risks vary across technologies.
 - Uniform support may misallocate resources toward less risky options.
 - But targeting risks misjudging future competitiveness.

Our approach:

- Compare policy instruments under asymmetric information and cost heterogeneity.
- Apply to green vs. blue hydrogen competition under CCfDs.
- Study trade-offs between instruments (quantity vs. price) and targeting (neutral vs. specific).

э

■ Prices vs. Quantities under Uncertainty: Weitzman (1974) and extensions

- Trade-offs under asymmetric information and imperfect substitutability (Williams III 2002; Meunier 2011; Weitzman 2020)
- Our contribution: two competing abatement technologies + technology-specific cost wedges
- Technology-neutral vs. technology-specific policies:
 - Fabra and Montero (2023): discrimination justified by the cost of public funds
 - Our approach: support justified by financing barriers or externalities

Risk aversion and CCfDs:

- CCfDs lower investment risks and financing costs (Richstein 2017; Richstein and Neuhoff 2022; Jeddi et al. 2021)
- Role of revenue certainty vs. investment barriers (Chiappinelli and Neuhoff 2020; Chaton and Metta-Versmessen 2023)

Financing constraints for green technologies:

- Clean tech access to capital and maturity gaps (Hall and Lerner 2010; Polzin et al. 2021; Ang et al. 2017; Brunnschweiler 2010)
- Few papers model technology-specific support explicitly

3

Objectives and preview of the results

Main research questions

- Normative question: Should climate policy be technology-neutral or targeted?
- Application: What is the optimal design of CCfDs for green vs. blue hydrogen in Europe?
- Methodology: A partial equilibrium model with competing technologies under asymmetric information and risk premia

Main findings

- Technology-neutral policies distort allocation when technologies face heterogeneous financing risks.
- Targeted subsidies (e.g. differentiated CCfDs) improve welfare by correcting these distortions.
- The gains from targeting are higher when technologies are close substitutes (strong competition).
- Combining a neutral quota with technology-specific subsidies outperforms specific and neutral quotas.
- In a calibrated model for green vs. blue H₂, targeted support nearly doubles the share of blue hydrogen.

• • • • • • • •

Main Model

Kasser & Meunier (Paris-Saclay)

Competing Green Technologies

1 May 25, 2025

э

E

Model Set-up: Two Competing Abatement Technologies

- **Technologies:** Two abatement options $i \in \{1, 2\}$ with long-term capacities q_i , total abatement $q = q_1 + q_2$
- Regulator's perspective (social planner):
 - Social cost function:

$$C(q_1, q_2) = (c_1 + \theta_1)q_1 + (c_2 + \theta_2)q_2 + \frac{\beta_1}{2}q_1^2 + \frac{\beta_2}{2}q_2^2 + \gamma q_1 q_2$$

 θ_i : cost shocks (mean zero); γ : substitutability between technologies

- Public benefit of abatement:

$$B(q) = \left(a - \frac{b}{2}q\right)q$$

Social welfare:

$$W(q_1, q_2, \theta_1, \theta_2) = B(q_1 + q_2) - C(q_1, q_2)$$

- Firm's perspective:
 - Perceived private cost:

$$\tilde{C}(q_1, q_2) = (c_1 + \rho_1 + \theta_1)q_1 + (c_2 + \rho_2 + \theta_2)q_2 + \frac{\beta_1}{2}q_1^2 + \frac{\beta_2}{2}q_2^2 + \gamma q_1 q_2$$

 ρ_i : cost premiums reflecting risk aversion

– Profit maximization under prices (p₁, p₂):

$$\Pi = p_1 q_1 + p_2 q_2 - \tilde{C}(q_1, q_2)$$

Model Set-up: Instruments and Timing

- Objective: compare four realistic policy instruments:
 - Price-based: one price p (neutral), or two prices p1, p2 (specific)
 - Quantity-based: one quota Q (neutral), or two quotas Q1, Q2 (specific)
- Timing:
 - Stage 1: regulator sets instrument level before knowing cost shocks θ_i
 - Stage 2: firms observe θ_i , choose q_i accordingly
- Welfare notation:

$$W_P^N, W_P^S, W_Q^N, W_Q^S$$

where P = price, Q = quota; N = neutral, S = specific

The expected values of quantities are denoted \bar{q}_i .

The optimal allocation q_1^* , q_2^* is the allocation that maximizes the social Welfare.

Quotas: Technology-neutral vs. Technology-specific

■ Technology-specific quotas Q₁, Q₂:

- Quantities fixed ex ante; unaffected by θ_i
- Optimal quotas: $Q_i^* = \bar{q}_i^*$ (based on socially optimal allocation)
- Cost premiums ρ_i do not influence optimal allocation

Technology-neutral quota $Q = Q_1^* + Q_2^*$:

- Market-clearing price \bar{p} ensures $q_1 + q_2 = Q$
- Allocation distorted by risk premiums and shocks:

$$q_1 = Q_1^* - rac{
ho_1 -
ho_2}{
ho_1 +
ho_2 - 2\gamma} - rac{ heta_1 - heta_2}{
ho_1 +
ho_2 - 2\gamma}$$

Proposition 1 – Welfare Difference

$$W_Q^N - W_Q^S = \frac{1}{2} \cdot \frac{\mathbb{E}[(\theta_1 - \theta_2)^2] - (\rho_1 - \rho_2)^2}{\beta_1 + \beta_2 - 2\gamma}$$

- A single quota allows quantities to adjust to cost shocks \Rightarrow gains from flexibility.
- But it fails to correct cost premiums ⇒ distorted allocation across technologies.
- These two effects work in opposite directions in the welfare comparison.

伺 ト イヨ ト イヨト

Technology-Neutral Quota with Two Subsidies

 Adding technology-specific subsidies to a single quota restores efficient allocation while preserving the adaptation to random cost shocks.

Proposition 2

A technology-neutral quota together with two subsidies ρ_1 and ρ_2 for quantities produced with technologies 1 and 2 outperforms two technology-specific quotas by:

$$\frac{1}{2} \frac{\mathbb{E}[(\theta_1 - \theta_2)^2]}{\beta_1 + \beta_2 - 2\gamma}$$

The gain from adding subsidies increases with γ , and equals:

$$\frac{1}{2} \frac{(\rho_1 - \rho_2)^2}{\beta_1 + \beta_2 - 2\gamma}$$

- Subsidies offset cost premium distortions without constraining total quantity.
- Higher substitutability (γ) magnifies both misallocation and the benefit of correcting it.

Prices : Technology-specific vs. Technology-neutral

- With price-based instruments, the regulator sets prices ex ante based on expected firm behavior.
- Technology-specific prices internalize risk premiums:

$$p_i^* = B'(\bar{q}^*) + \rho_i$$

Uniform price averages across technologies, compounding distortions:

$$p^{*} = \frac{(\beta_{2} - \gamma)p_{1}^{*} + (\beta_{1} - \gamma)p_{2}^{*}}{\beta_{1} + \beta_{2} - 2\gamma}$$

Proposition 3 – Welfare Gain from Price Discrimination

$$W_{P}^{S} - W_{P}^{N} = \frac{1}{2} \cdot \frac{(\rho_{2} - \rho_{1})^{2}}{\beta_{1} + \beta_{2} - 2\gamma}$$

The gain increases with the substitutability parameter γ .

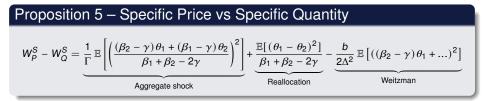
- Discrimination corrects misallocation due to heterogeneous risk.
- The gain from discriminating is the same as the gain obtained by introducing two subsidies into a single, technology-neutral auction

Kasser & Meunier (Paris-Saclay)

Competing Green Technologies

Neutral Price vs Quantity Instruments

- The distortion introduced by risk premiums plays no role here.
- Three key factors shape the price versus quantity comparison:
 - **Cost shocks** (θ_i) : increases the value of flexibility.
 - Slope of marginal benefit and cost
 - Substitutability (γ) : determines the degree of competition between technologies.


Proposition 4 – Neutral Price vs Neutral Quantity

$$W_P^N - W_Q^N = \frac{1}{2\Gamma^2} \cdot (\Gamma - b) \cdot \mathbb{E}\left[\left(\frac{(\beta_2 - \gamma)\theta_1 + (\beta_1 - \gamma)\theta_2}{\beta_1 + \beta_2 - 2\gamma}\right)^2\right]$$

in which $\Gamma = \frac{\beta_1 \beta_2 - \gamma^2}{\beta_1 + \beta_2 - 2\gamma}$

- Γ: slope of marginal cost. b: slope of marginal benefit.
- This reflects the classic Weitzman (1974) trade-off:
 - If $\Gamma > b$: price-based instruments preferred.
 - If $\Gamma < b$: quantity-based instruments preferred.
- Welfare difference is proportional to the variance of the cost shock.

Specific Price vs Quantity Instruments

- The comparison can be decomposed into three interpretable effects:
 - Weitzman trade-off (see proposition 4)
 - Agregate shock effect: captures the effect of the aggregate shock on the total quantity.
 - Reallocation effect: captures the gain for price instrument from reallocation between technologies, and depends on the dispersion of the individual shocks.
- Role of γ :
 - Higher γ leads to stronger reallocation gains for prices (technologies compete more).
 - But also increases aggregate volatility → ambiguous effect.

・ロト・日本・モート ・日本・日本

Application to CCfDs

Technology-neutral or specific support?

- Purpose of CCfDs: reduce investment risk by guaranteeing a CO₂ price ⇒ lower capital costs for clean tech developers (Richstein and Neuhoff 2022)
- Hybrid nature of CCfDs:
 - Theoretically price-based (guaranteed CO₂ price)
 - Practically quantity-driven (allocation via auctions, fixed decarbonization targets)
- Firms are risk-averse: risk-adjusted cost includes a premium : $\rho_i = \lambda(\sigma^2 + \sigma_i^2)$ where $\sigma^2 = carbon price risk, \sigma_i^2 = tech-specific cost risk, <math>\lambda$ risk aversion.
- **Naive CCfD effects:** Removes σ^2 , but leaves σ_i^2 untreated
- Policy implication:
 - Uniform CCfDs induce misallocation when $\rho_1 \neq \rho_2$
 - Optimal CCfD should adjusts for ρ_i
- Welfare loss of naive CCfD:

$$N_{P}^{N} - \hat{W} = \frac{\lambda^{2}}{2\Gamma + b} \left[\frac{(\beta_{1} - \gamma) \sigma_{2}^{2} + (\beta_{2} - \gamma) \sigma_{1}^{2}}{\beta_{1} + \beta_{2} - 2\gamma} \right]^{2}$$

 \Rightarrow Loss grows with premium differences and competition intensity (γ)

3

Numerical application

Kasser & Meunier (Paris-Saclay)

Competing Green Technologies

May 25, 2025

Microfounded Model

Analytical exploration, without asymmetric information

- A continuum of polluting sites faces a choice:
 - Adopt technology 1 or 2 (e.g., green or blue H₂)
 - Or remain inactive (if both net gains are negative)
- Sites differ by **cost pairs** (c_1, c_2) drawn from joint distribution $f(c_1, c_2)$
- With technology-specific prices p₁, p₂ and cost premiums ρ₁, ρ₂:
 - Tech 1 chosen if $p_1 (c_1 + \rho_1)$ dominates
 - Tech 2 chosen if $p_2 (c_2 + \rho_2)$ dominates
- Resulting total welfare (without asymmetric information):

$$W = B(q_1 + q_2) - \int_{\mathcal{D}_1} c_1 f(c_1, c_2) dc_1 dc_2 - \int_{\mathcal{D}_2} c_2 f(c_1, c_2) dc_1 dc_2.$$
(1)

- The intensity of competition depends on how many firms are nearly indifferent i.e., when $c_1 \approx c_2$.
- The more firms are close to this frontier, the more responsive the technology mix is to small price changes (i.e $\frac{\partial q_1}{\partial p_2}$). This responsiveness plays the same role as γ in the quadratic model. \Rightarrow A high γ corresponds to a dense indifference frontier in the microfounded model.

Illustration: Misallocation from Ignoring Cost Premiums

Optimal vs. biased allocation across sites

- **Left:** Optimal allocation with decentralized prices $p_i = B'(q^*) + \rho_i$
- Right: Biased equilibrium under uniform price without correcting for cost premiums
- Two distortions:
 - Sites that should adopt remain inactive (gray area)
 - Sites adopt the wrong technology (hatched area)

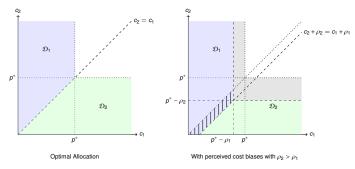


Figure: Distribution of abatement across sites at the optimum and biased equilibrium

Calibration

From grey to low-carbon hydrogen in Europe

- Reference: Grey hydrogen via SMR without CO₂ capture.
- Clean alternatives:
 - Technology 1 Green H₂: electrolysis with renewable electricity
 - Technology 2 Blue H₂: SMR + CCS (high-capture variant, 95%)
- Data: 9.2 Mt/year of grey hydrogen production in Europe
- Decarbonization Target: 55% reduction target for industrial emissions by 2030

Parameter	Meaning	Value	Source
b ₁ , b ₂	Energy use (green / blue H ₂)	0.05 / 0.04 MWh/kg	IEA
C1, C2	Fixed costs (€/kg)	1.75 / 1.9	EU H ₂ Observatory
θ_1, θ_2	Cost shocks (€/kg)	$N(0, 1.1^2) / N(0, 1.3^2)$	Internal calibration
λ	Risk aversion	5	Epstein et al.
$\sigma_{K,1} / \sigma_{K,2}$	CAPEX uncertainty (€/kg)	0.14 / 0.38	OECD
σ_{pCO_2}	Carbon price volatility (€/kg)	0.29	EEA
$\sigma_{pCO_2} Q^*$	Decarbonization target	5.1 Mt H ₂ /year	EU H ₂ Observatory
(a, b)	Abatement benefit parameters	(8.6, 10 ⁻⁶)	Internal

Distribution of Energy Input Costs

Heatmap of hydrogen production by site-level energy prices

- Sites are positioned by their energy input costs:
 - x-axis: Estimated Levelized Cost of Electricity (LCOE) in 2030, impacting the cost of green H₂
 - y-axis: Estimated natural gas price, impacting the cost of blue H₂
- Each cell represents a grey H₂ production unit in 2030
- This cost landscape shapes spatial heterogeneity in our model

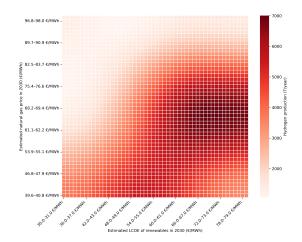


Figure: Grey H_2 production density by projected energy costs (2030)

Kasser & Meunier (Paris-Saclay)

Competing Green Technologies

≧ ▶ < ≧ ▶</p>
May 25, 2025

Main Results

Overview of policy outcomes

Scenario	Welfare (bn)	Price (/tCO ₂)	Green H ₂ (%)	Blue H ₂ (%)
0. CCfD naive	8.13	580	21.4	9.2
1. Price-based, techno-neutral	12.12	690	45.3	14.3
2. Price-based, techno-specific	13.24	(640, 770)	30.2	33.4
3. Quota-based, techno-neutral	12.04	680	40.2	16.1
4. Quota-based, techno-specific	13.04	(600, 770)	21.2	34.8
5. Quota-based, neutral, subsidies	13.19	(630, 750)	29.1	29.0

Table: Expected outcomes under alternative policy designs

- Naive CCfD underperforms: too little abatement, overly green mix.
- **Targeting matters:** tech-specific instruments significantly improve welfare and balance the mix.
- Best outcome: tech-specific prices (Scenario 2).
- Neutral quota + subsidies (Scenario 5) nearly as good.
- Targeting gains greater than instrument choice gains.

Sensitivity Analysis: Spatial Distribution of Sites

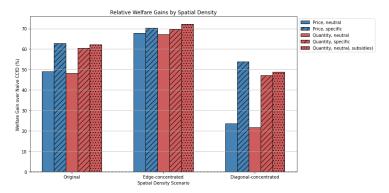


Figure: Welfare gains vs. naïve CCfD across spatial scenarios

- Higher site concentration along the diagonal \Rightarrow higher substitutability (high γ) \Rightarrow larger benefit from technology-specific policies
- Edge-concentrated configuration \Rightarrow lower $\gamma \Rightarrow$ technology-neutral instruments perform relatively better

• • • • • • • • • •

Sensitivity Analysis: Decarbonization Target

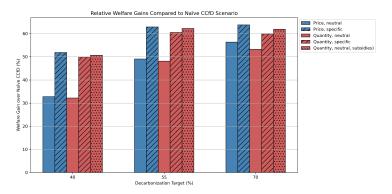


Figure: Welfare gains vs. naïve CCfD at 40%, 55%, and 70% decarbonization targets

- Higher targets ⇒ more costly to under-decarbonize ⇒ quota-based instruments gain relative importance
- At low ambition levels, technology-specific instruments bring clearer benefits, especially for quantity-based policies

Kasser & Meunier (Paris-Saclay)

< □ > < ^[] >

Sensitivity Analysis: Risk Aversion

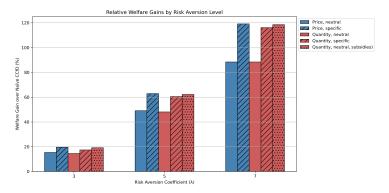


Figure: Welfare gains vs. naïve CCfD for different values of risk aversion λ

- Higher $\lambda \Rightarrow$ stronger cost premium distortions \Rightarrow greater gains from technology-specific support
- At high risk aversion, quantity-specific instruments close the gap with price instruments

-

SQA

Sensitivity Analysis: Cost of Missing Target

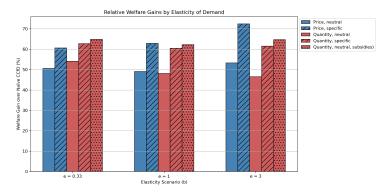


Figure: Welfare gains vs. naïve CCfD for different values of penalty parameter e

- Low e (high penalty b) ⇒ quantity-based instruments preferred: they guarantee the target is met
- High *e* (low penalty) ⇒ price-based instruments regain advantage; targeting remains robust in both cases

< □ > < ^[] >

Conclusion

Kasser & Meunier (Paris-Saclay)

Competing Green Technologies

May 25, 2025

Conclusion

Main insights

 Policy design under uncertainty: Our model shows how asymmetric information and heterogeneous risk premiums distort technology allocation.

Key theoretical results:

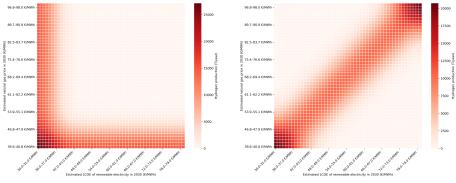
- With quantities, neutral quotas + targeted subsidies outperform all other designs.
- With prices, technology-specific instruments always dominate uniform ones.
- The choice between price vs. quantity depends on sensitivity to cost shocks.
- Numerical illustration: Applied to green vs. blue hydrogen competition in Europe. Confirms: *Targeting is most valuable when technologies are close substitutes.*

Limitations and future directions

- Risk premiums assumed observable learning or monitoring could be modeled.
- Full substitutability in emissions is a strong assumption (esp. for blue H₂).
- Uncertainty on true abatement potential (e.g., methane leakage) should be internalized.

Appendix

Kasser & Meunier (Paris-Saclay)


Competing Green Technologies

■ ▶ < ■ ▶</p>
May 25, 2025

→ < Ξ →</p>

E

Appendix

(a) Edge-concentrated scenario

(b) Diagonal-concentrated scenario

Figure: Smoothed hydrogen production by projected energy costs in 2030 under two alternative spatial distributions of sites. Production values are diffused using a Gaussian filter.