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• Stabilizing global warming requires net zero CO2 emissions

• But: What about hard-to-abate emissions?

→ Carbon Dioxide Removals (CDR) needed («negative emissions»)

• Planting trees; BioCCS

• Direct Air Capture (DAC)

• IPCC and IEA scenarios include extensive use of DAC in the future

• What is DAC?

• Extracting CO2 from the air

• Storing it underground

or below seabed

Climeworks

Mammoth DAC facility (Iceland)
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• DAC is not a quick fix of the climate change problem

• Challenge: CO2 concentration in the air ca. 430 ppm → 0.043%

• High costs (>> EU ETS price)

• Very energy intensive (electricity and heat)

• Where to store gigatons of CO2?

• But: DAC is an immature technology 

• RD&D activities in different companies → costs may come down

• Economies of scale? Or rising costs due to scarcity of energy and storage?

• Different DAC technologies with different energy intensities

• How will DAC adoption interact with the electricity market?

• Will DAC plants run continously or flexibly (depending on electricity price)?
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• Future electricity market: Intermittent sources will dominate

• Wind and solar

→ More volatile electricity prices

• Illustration: Germany 2024 (hourly data)

Load duration curve for wind and solar Price duration curve
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• How will DAC adoption interact with the electricity market?

• Will it aggravate or alleviate electricity price volatility 

and imbalances?

• How will changes in the electricity market affect the choice of 

DAC technology – and vice versa?

• Should the government support the most or the least 

energy-intensive DAC technologies (if any)?



DAC: Different technologies
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• Two main DAC configurations: Liquid or solid sorbents

• Keith et al. (2018); Realmonte et al. (2019) Ozkan et al. (2022); Herzog (2022)

• Liquid DAC: high temperature, large-scale operations, equipment 

already technologically mature, energy intensive

• Solid DAC: low temperature, small-scale modular, less energy 

intensive, higher capital costs

• Our analysis: Two different DAC technologies «solid» and «liquid»

• Possible outcome: Capital-intensive «Solid» runs continuously, while energy-

intensive «liquid» only runs when electricity price is sufficiently low



Theoretical model
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• Partial equilibrium model with two phases t = 1,2

• t = 1: High production of electricity (S); t = 2: Low production (σS, σ < 1)

• Price of electricity pt

• Relative price (volatility): 

• Unit capacity cost of electricity prodution β

• Profits for electricity producers:

→ Zero profit condition

• Negative relationship between the two prices 

(for given β and σ):

• Demand (excl. DAC): D(pt), D’ < 0

• Assume isoelastic demand to derive reduced form expressions
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Theoretical model

Norwegian University of Life Sciences7

• Add electricity demand from DAC (disregard heat)

• Assume two DAC technologies j with different unit capital costs (γj) 

and energy intensities (εj) – per unit CO2 captured

• γ1 > γ2

• ε1 < ε2

• Electricity used to capture one ton of CO2:

• Cj,t: CO2 captured by technology j in phase t

• Electricity market equilibrium in phase t:

• Cumulative capture of CO2:

• Assume convex storage costs u(C) → u’(C) < 0

• DAC producer faces fixed unit storage cost u equal to equilibrium level of u’(C)

• Reduced form expressions: Assume quadratic u(C) function
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• DAC producer’s profit:

• τ: CO2-price (= DAC subsidy)

→ First order conditions:

1.

2.

• λj,t: Shadow price on the capacity constraints

1. → Produce if net operating income is (weakly) positive

2. → Invest if net income (λj,1 + λj,2) covers capacity cost (γj)

• Note: Capacity is fully used in phase 1 (low electricity price)
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Theoretical analysis

Norwegian University of Life Sciences9

• Will adoption of DAC increase or decrease price volatility ?

• We find:

• In words:

Prices become more volatile unless DAC utilization is sufficiently 

lower in the high-price phase 2 than in phase 1 

• In other words:

If DAC is mostly turned off during the high-price phase, prices 

become less volatile

• What if one technology runs continuously and one flexibly?
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• Two possible main outcomes:

• OUTCOME 1: Investments in only one technology 

and

• OUTCOME 2: Investments in both technologies

• Three alternatives:

2i)

2ii) and

2iii)

• Alternative ii) most likely in our model (cf. also simulations)

• Here: Focus on Outcome 2ii)
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• We derive reduced form expressions and investigate how changes 

in important parameters affect price volatility, DAC investments etc

• Higher CO2 price: 

• Increases investments in both DAC technologies

• Price volatility unchanged

 Parameter 

τ γ1  γ2 ε1 ε2 

Variable 

u + (= 1) - - - - 

p1 0 + - + - 

p2 0 - + - + 

p̂  0 - + - + 

K1 + - ?* - ?* 

K2 + ?* - ?* - 

S + - ? ? ? 

 

p̂
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• Higher capital cost for technology j (γj) : 

• Price volatility decreases if j = 1 (least energy intensive), 

but increases if j = 2 (most energy intensive)

• Investments drop for technology j – ambiguous for the other technology

• Higher energy intensity for technology j (εj) :

• Similar results as for capital costs

 Parameter 

τ γ1  γ2 ε1 ε2 

Variable 

u + (= 1) - - - - 

p1 0 + - + - 

p2 0 - + - + 

p̂  0 - + - + 

K1 + - ?* - ?* 

K2 + ?* - ?* - 

S + - ? ? ? 
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Intuition behind the results:

• Lower (capital or energy) costs for the least energy-intensive DAC 

technology (which runs continously) 

→ More use of this technology 

→ More electricity demand in both phases

• More inflexible electricity demand makes prices more volatile

• Lower (capital or energy) costs for the most energy-intensive DAC 

technology (which runs continously) → More use of this technology 

→ More electricity demand only in low-price phase

• More flexible electricity demand makes prices less volatile

• Might even need less electricity capacity if capital costs decline for this technology



Numerical analysis - calibration
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• Parameterize the model based on various DAC data (γj and εj) 

and in the context of the German electricity market – annual data



Numerical analysis - simulation
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• We simulate the model without and with DAC

With DAC: 

- Outcome 2ii)

- Lower price 

volatility

- Highest investment 

in technology 1

Without DAC: 

- High price volatility



Numerical analysis - simulation
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• What are the effects of changes in capital costs (γj)?

Initial levels of γj

: Boundaries of Outcome 2

Results are in line with 

analytical results for 

Outcome 2

Similar pattern if 

technology j is alone in 

the market (Outcome 1)

Energy 

intensive (γ2)

Capital 

intensive (γ1)



Numerical analysis - simulation

Norwegian University of Life Sciences17

• What are the effects of changes in capital costs?



Numerical analysis - simulation
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• What are the effects of changes in energy intensity (εj)?

Results are in line with 

analytical results for 

Outcome 2

If tech 2 is alone in the 

market (Outcome 1), 

further efficiency 

improvements have 

opposite effects

Changes in energy 

intensity have several 

effects on energy use

Capital 
intensive (ε1)

Energy 

intensive (ε2)



Numerical analysis - simulation

Norwegian University of Life Sciences19

• What are the effects of changes in energy intensity?



Numerical analysis - simulation
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• What are the effects of changes in the CO2 price?



Conclusions
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• DAC can either increase or decrease electricity price volatility. 

• Depends on the choice of DAC technology 

• Cost reductions for the most energy efficient DAC technology 

increase price volatility 

• More continuous electricity demand

• Cost reductions for the most energy intensive DAC technology 

decrease price volatility

• Larger share of electricity demand is flexible and turned off in high-price phases

• Higher CO2 prices increase deployment of the most energy efficient 

DAC technology to a larger degree than the most energy intensive

• More profitable to run the DAC plant continuously 
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